[1] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and buildings, 40(3) (2008) 394-398.
[2] F. Barbir, T.N. Veziroǧlu, H.J. Plass Jr, Environmental damage due to fossil fuels use, International journal of hydrogen energy, 15(10) (1990) 739-749.
[3] P.H. Shaikh, N.B.M. Nor, P. Nallagownden, I. Elamvazuthi, T. Ibrahim, A review on optimized control systems for building energy and comfort management of smart sustainable buildings, Renewable and Sustainable Energy Reviews, 34 (2014) 409-429.
[4] T. Ramesh, R. Prakash, K. Shukla, Life cycle energy analysis of buildings: An overview, Energy and buildings, 42(10) (2010) 1592-1600.
[5] M.H. Amjadi, M. Nezamabadi-Pour, M.M. Farsangi, Estimation of electricity demand of Iran using two heuristic algorithms,Energy Conversion and Management, 51(3) (2010) 493-497.
[6] رستمی، مهدی، خائموطنی، عسگر، امیدعلی، مصطفی، پیشبینی تقاضای برق در ایران: کاربرد مدل ترکیبی تعدیل جزئی پویا و میانگین متحرک خود همبسته یکپارچه (ARIMA)، 7(25) (1397)، 177-199.
[7] H. Koukkari, L. Brangança, Review on the European strategies for energy-efficient buildings, International Journal of Sustainable Building Technology and Urban Development, 2(1) (2011) 87-99.
[8] L. Stankeviciute, P. Criqui, Energy and climate policies to 2020: the impacts of the European “20/20/20” approach, International Journal of Energy Sector Management, 2(2) (2008) 252-273.
[9] H. Rashidi Aghdam, L. Yarmohammadi, H. Malakooti, Studying Variety of Intelligent Control System Techniques in Hospitals for Optimization of Energy Consumption, 11(21) (2017) 57-63.
[10] P. Palensky, D. Dietrich, Demand side management: Demand response, intelligent energy systems, and smart loads, IEEE transactions on industrial informatics, 7(3) (2011) 381-388.
[11] B. Chai, J. Chen, Z. Yang, Y. Zhang, Demand response management with multiple utility companies: A two-level game approach, IEEE Transactions on Smart Grid, 5(2) (2014) 722-731.
[12] F.K. Aldrich, Smart homes: past, present and future, in: Inside the smart home, Springer, 2003, pp. 17-39.
[13] B. Asare-Bediako, P.F. Ribeiro, W.L. Kling, Integrated energy optimization with smart home energy management systems, in: Innovative Smart Grid Technologies (ISGT Europe), 2012 3rd IEEE PES International Conference and Exhibition on, IEEE, 2012, pp. 1-8.
[14] P. Rocha, A. Siddiqui, M. Stadler, Improving energy efficiency via smart building energy management systems: A comparison with policy measures, Energy and Buildings, 88 (2015) 203-213.
[15] L. Wang, Z. Wang, R. Yang, Intelligent multiagent control system for energy and comfort management in smart and sustainable buildings, IEEE transactions on smart grid, 3(2) (2012) 605-617.
[16] J.A. Barbosa, C. Araújo, R. Mateus, L. Bragança, Smart interior design of buildings and its relationship to land use, Architectural Engineering and Design Management, 12(2) (2016) 97-106.
[17] M. Morales-Beltran, P. Teuffel, Towards smart building structures: adaptive structures in earthquake and wind loading control response–a review, Intelligent Buildings International, 5(2) (2013) 83-100.
[18] D. Minoli, K. Sohraby, B. Occhiogrosso, IoT considerations, requirements, and architectures for smart buildings—Energy optimization and next-generation building management systems, IEEE Internet of Things Journal, 4(1) (2017) 269-283.
[19] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, T. Weng, Occupancy-driven energy management for smart building automation, in: Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building, ACM, 2010, pp. 1-6.
[20] D.E. King, M.G. Morgan, Customer-focused assessment of electric power microgrids, Journal of Energy Engineering, 133(3) (2007) 150-164.
[21] M. Zhou, Y. Gao, G. Li, Study on improvement of available transfer capability by demand side management, in: Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on, IEEE, 2008, pp. 545-550.
[22] A. Bagherian, S.M. Tafreshi, A developed energy management system for a microgrid in the competitive electricity market, in: PowerTech, 2009 IEEE Bucharest, IEEE, 2009, pp. 1-6.
[23] F.A. Mohamed, H.N. Koivo, System modelling and online optimal management of microgrid using mesh adaptive direct search, International Journal of Electrical Power & Energy Systems, 32(5) (2010) 398-407.
[24] M. Stadler, A. Siddiqui, C. Marnay, H. Aki, J. Lai, Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero‐net‐energy buildings, European Transactions on Electrical Power, 21(2) (2011) 1291-1309.
[25] F. Brahman, M. Honarmand, S. Jadid, Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system, Energy and Buildings, 90 (2015) 65-75.
[26] K. Ma, T. Yao, J. Yang, X. Guan, Residential power scheduling for demand response in smart grid, International Journal of Electrical Power & Energy Systems, 78 (2016) 320-325.
[27] S. Moon, J.-W. Lee, Multi-residential demand response scheduling with multi-class appliances in smart grid, IEEE transactions on smart grid, 9(4) (2018) 2518-2528.
[28] K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction studies, Renewable and Sustainable Energy Reviews, 81 (2018) 1192-1205.
[29] D.T. Delaney, G.M. O'Hare, A.G. Ruzzelli, Evaluation of energy-efficiency in lighting systems using sensor networks, in: Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, ACM, 2009, pp. 61-66.
[30] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, K. Whitehouse, The smart thermostat: using occupancy sensors to save energy in homes, in: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, ACM, 2010, pp. 211-224.
[31] Z. Wang, L. Wang, A.I. Dounis, R. Yang, Multi-agent control system with information fusion based comfort model for smart buildings, Applied Energy, 99 (2012) 247-254.
[32] Z. Wang, L. Wang, Occupancy pattern based intelligent control for improving energy efficiency in buildings, in: Automation Science and Engineering (CASE), 2012 IEEE International Conference on, IEEE, 2012, pp. 804-809.
[33] P.H. Shaikh, N.B.M. Nor, P. Nallagownden, I. Elamvazuthi, T. Ibrahim, Intelligent multi-objective control and management for smart energy efficient buildings, International Journal of Electrical Power & Energy Systems, 74 (2016) 403-409.
[34] S. Aslam, Z. Iqbal, N. Javaid, Z.A. Khan, K. Aurangzeb, S.I. Haider, Towards efficient energy management of smart buildings exploiting heuristic optimization with real time and critical peak pricing schemes, Energies, 10(12) (2017) 2065.
[35] R. Yang, L. Wang, Multi-objective optimization for decision-making of energy and comfort management in building automation and control, Sustainable Cities and Society, 2(1) (2012) 1-7.
[36] V.L. Erickson, A.E. Cerpa, Occupancy based demand response HVAC control strategy, in: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, ACM, 2010, pp. 7-12.
[37] I. Georgievski, V. Degeler, G.A. Pagani, T.A. Nguyen, A. Lazovik, M. Aiello, Optimizing energy costs for offices connected to the smart grid, IEEE Transactions on Smart Grid, 3(4) (2012) 2273-2285.
[38] C. Bharathi, D. Rekha, V. Vijayakumar, Genetic algorithm based demand side management for smart grid, Wireless Personal Communications, 93(2) (2017) 481-502.
[39] S. Bahrami, V.W. Wong, An autonomous demand response program in smart grid with foresighted users, in: Smart Grid Communications (SmartGridComm), 2015 IEEE International Conference on, IEEE, 2015, pp. 205-210.
[40] S. Bahrami, V.W. Wong, J. Huang, An online learning algorithm for demand response in smart grid, IEEE Transactions on Smart Grid, 9(5) (2018) 4712-4725.
[41] A. Barbato, G. Carpentieri, Model and algorithms for the real time management of residential electricity demand, in: Energy Conference and Exhibition (ENERGYCON), 2012, pp. 701-706.
[42] M. Kummert, M.-A. Leduc, A. Moreau, Using MPC to reduce the peak demand associated with electric heating, in: Model predictive control in buildings workshop, 2011.
[43] K.-h. Lee, J.E. Braun, Model-based demand-limiting control of building thermal mass, Building and Environment, 43(10) (2008) 1633-1646.
[44] S.D. Ramchurn, P. Vytelingum, A. Rogers, N. Jennings, Agent-based control for decentralised demand side management in the smart grid, in: The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, International Foundation for Autonomous Agents and Multiagent Systems, 2011, pp. 5-12.
[45] F. Umbach, Global energy security and the implications for the EU, Energy policy, 38(3) (2010) 1229-1240.
[46] خانی، محمد سعید، فلاحی، اسماعیل، بانشی، مهدی، ارائه مدل مدیریت تامین انرژی در ایران بر اساس معیارهای فنی، اقتصادی، و زیستمحیطی، 5(18) (1395) 29-60
[47] C. Kühnel, T. Westermann, F. Hemmert, S. Kratz, A. Müller, S. Möller, I'm home: Defining and evaluating a gesture set for smart-home control, International Journal of Human-Computer Studies, 69(11) (2011) 693-704.
[48] شهری، رضا، زمانی، حیدر، حاملی، منوچهر، بررسی هوشهندسازی در ساختمان (BMS)، دومین کنفرانس ملی معماری و منظر شهری پایدار، اردیبهشت 1394، ایران.
[49] کماسی، مهدی، درویشی، حمید، محب زندی، سپیده، بررسی نقش سیستم مدیریت هوشمند BMS در کاهش مصرف انرژی و هزینههای ساختمان، نخستین کنفرانس بینالمللی انسان، معماری، مهندسی عمران و شهر، خرداد 1394، تبریز، ایران.
[50] E. Baneshi, M.H. Mehraban, Investigate the performance of smart buildings and building management system, in: International Conference on Research in Science and Technology, Kualalampur, Malaysia, 2015.
[51] M. Emamgholizadeh, M. Salari, Optimization of Energy Consumption in an Administrative Building by Calculating the Impact of External Components and Automating the Powehouse, Geography, Civil, and Urban Management Studies, 3(1) (2017) 102-111.
[52] M. , Y. Baffalio, A. Duplan, B. Ferrand, Smart Home: Hope or hype, Greenwich Consulting, (2013).
[53] E.M. Smith, D.R. Sewell, P.T. Golden, System and method for energy management, in, Google Patents, 2004.
]55[ ترازنامه انرژی ایران، 1394
]57[ خداداد کاشی، فرهاد، اکابری تفتی، مهدی، موسوی جهرمی، یگانه، خسروی نزاد، علی اکبر، محاسبه هزینه اجتماعی انتشار دیاکسید کربن به تفکیک استآنهای مختلف در ایران، فصلنامه پژوهشهای سیاستگذاری و برنامهریزی انرژی، 2(2) (1395) 77-110.
]59[ علی مشایخی، تدوین چارچوب خودکار انتخاب گزینه مناسب بنای ساختمآنهای مسکونی هوشمند بر مبنای موازنه هزینه ساخت و مصرف انرژی طول عمر با استفاده از مدلسازی اطلاعات ساختمان، پایاننامه کارشناسی ارشد، شهریور 1396.