کاربرد الگوریتم ژنتیک بر مبنای آرشیو در مدیریت پیامد ورود بار آلودگی ناگهانی در شبکه‌های توزیع آب شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیار دانشکده مهندسی عمران و محیط زیست، موسسه آموزش عالی خاوران

3 استاد دانشکده مهندسی عمران دانشگاه علم و صنعت ایران

چکیده

در این تحقیق برای نخستین بار بهینه­سازی فعالیت­های مدیریت پیامد در شبکه توزیع آب شهری با رویکرد کاهش زمان بهینه‌سازی و مبتنی بر ظرفیت آرشیو مورد توجه قرار گرفته است. در این تحقیق از روش تلفیقی شبیه‌سازی-بهینه‌سازی برای مدیریت پیامد و از مدل شبیه‌سازی EPANET و الگوریتم بهینه‌سازی NSGA-II بر مبنای آرشیو استفاده شده است. دو تابع هدف به ترتیب به منظور حداقل کردن تعداد فعالیت‌های واکنشی (کاهش هزینه‌ها) و حداقل کردن جرم آلودگی مصرف شده توسعه داده شده است. تعداد 20 شیر قطع و وصل و 31 شیر آتش‌نشانی به ترتیب برای ایزوله کردن شبکه و تخلیه آلودگی در نظر گرفته شده است. بدون انجام برنامه مدیریت پیامد، در صورت بروز آلودگی در شبکه مقدار کل جرم آلودگی مصرف شده 81/3 کیلوگرم خواهد بود. با استفاده از 15 فعالیت واکنشی جرم آلودگی مصرف شده به 60/6 کیلوگرم رسیده است. برای استخراج فعالیت‌های بهینه بین این اهداف با NSGA-II رایج و حداکثر 15 فعالیت در حدود 73 دقیقه زمان نیاز است. به منظور کاهش این زمان و فراهم آوردن امکان انجام مدیریت پیامد در زمان واقعی از الگوریتم NSGA-II بر مبنای آرشیو نیز استفاده شده است. با استفاده از ظرفیت آرشیو، امکان عدم اجرای مدل شبیه‌سازی برای کروموزوم‌های مشابه فراهم می‌گردد. رویکرد پیشنهادی برای ظرفیت آرشیو با تعداد صفر، 100، 200، 500، 1000، 2000، 3000، 4000 و 5000 نشان می­دهد که به طور کلی با افزایش جمعیت آرشیو از صفر به 5000، زمان استخراج منحنی تعامل بین اهداف از 73 به 35 دقیقه کاهش می‌یابد که حاکی از کاهش بیش از 50 درصدی است. نتایج نشان می‌دهد که در صورت انتخاب مقدار کوچکی برای ظرفیت آرشیو، به عنوان مثال، تعداد 50 یا 100، زمان مورد نیاز برای استخراج فعالیت‌های بهینه اندکی نسبت به حالت مبنا افزایش می‌یابد. دلیل این موضوع آن است که در صورت انتخاب مقدار کوچکی برای ظرفیت آرشیو، بخشی از زمان اجرای مدل شبیه‌سازی- بهینه‌سازی صرف پیدا کردن کروموزوم‌های مشابه خواهد شد و با توجه به ظرفیت کم آرشیو، افزایش زمان مورد نیاز برای استخراج کروموزوم‌های مشابه بیشتر از تأثیر کاهش زمان استفاده از ظرفیت آرشیو است. بر این اساس، با استفاده از ظرفیت آرشیو، امکان کاهش زمان بهینه‌سازی و مدیریت پیامد در شبکه در زمان واقعی فراهم می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Achieve-Based Genetic Algorithm for Consequence Management of Contaminant Entering in Water Distribution Networks

نویسندگان [English]

  • fariborz masoumi 1
  • Seyyed Nasser Bashi-Azghadi 2
  • Abbas Afshar 3
1 Department of civil engineering, faculty of engineering, university of mohaghegh ardabili, Ardabil, Iran
2 Assistant Professor, Department of Civil Engineering and Environment, Khavaran Higher Education Institute, Mashhad, Iran.
3 Professor, School of Civil Engineering, Iran University of Science and Technology
چکیده [English]

In this research, for the first time, finding the optimal operation actions in WDN to decrease the optimization time is taken into consideration. Valve(s) and hydrant(s) are also employed for isolating and flushing the contamination out of the network. The proposed embedded simulation-optimization approach for consequence management in this study is compromised EPANET simulation model and archive-based non-dominated sorting genetic algorithm-II (NSGA-II). Two objective functions are considered in this paper. The first objective function, minimized numbers of field operational actions related to expenses of the optimal solutions, whereas the other one minimized “consumed contamination mass” take into account for public health and safety. 20 valves and 31 hydrants are designed to insulate the network and discharge pollution, respectively. Without a follow-up management program, the total amount of contamination consumed in the event of network contamination would be 81.3 kg. Using 15 reactive activities, the mass of contamination consumed has reached 60.6 kg. For extracting the Pareto front between these objective functions with general NSGA-II which is a constraint to a maximum of 15 operational actions, approximately 73 minutes is required. To decrease this optimization time, archive-based NSGA-II is taken into account. With an archiving concept, it is possible to not implement a simulation model for similar chromosomes. Sensitivity analysis on the archive capacity of 0, 100, 200, 500, 1,000, 2,000, 3,000, 4,000, and 5,000 chromosomes has been investigated. As an example, with an increase in archive capacity from 0 to 5000, the required time for extracting the optimal Pareto front is reduced from 73 to about 35 minutes, indicating a decrease of more than 50%. The results showed that if a small amount is selected for the archive capacity, for example, 50 or 100, the time required to extract optimal activities increases slightly relative to the base state. The reason for this is that if a small amount is selected for the archive capacity, part of the implementation time of the simulation-optimization model will be spent on finding similar chromosomes, and due to the low capacity of the archive, t is time to use the archive capacity. Using the archive, it is possible to reduce the time optimization and consequence management of the network in real-time operation.

کلیدواژه‌ها [English]

  • Consequence Management
  • Water Distribution Network
  • Simulation-Optimization
  • Archive Capacity
[1] USEP, Response protocol toolbox–Public health response guide, Module 5, in: http://www.epa.gov/watersecurity/pubs/ guide_response_module5.pdf (Ed.), 2004.
[2] T. M. Baranowski, E. J. LeBoeuf, Consequence Management Optimization for Contaminant Detection and Isolation, Journal of Water Resources Planning and Management, 132(4) (2006) 274–282.
[3] T.M. Baranowski, E.J. LeBoeuf, Consequence management utilizing optimization, Journal of Water Resources Planning and Management, 134(4) (2008) 386-394.
[4] A. Preis, A. Ostfeld, Multiobjective contaminant response modeling for water distribution systems security, Journal of Hydroinformatics, 10(4) (2008) 267-274.
[5] L. Alfonso, A. Jonoski, D. Solomatine, Multiobjective optimization of operational responses for contaminant flushing in water distribution networks, Journal of Water Resources Planning and Management, 136(1) (2009) 48-58.
[6] A. Rasekh, K. Brumbelow, Adaptive emergency response to water distribution system contamination events, in World Environmental and Water Resources Congress 2012, (2012) 2981–2986.
[7] Rasekh, K. Brumbelow, A dynamic simulation–optimization model for adaptive management of urban water distribution system contamination threats, Applied Soft Computing, 32 (2015) 59-71.
[8] E. Salomons, A. Ostfeld, Slug Feed Optimal Disinfection of Water Distribution Networks Following a Contamination Event, in:  World Environmental and Water Resources Congress 2016, 516-522.
[9] R. Taormina, S. Galelli, N.O. Tippenhauer, E. Salomons, A. Ostfeld, Characterizing cyber-physical attacks on water distribution systems, Journal of Water Resources Planning and Management, 143(5) (2017) 04017009.
[10] S.N. Bashi-Azghadi, M.H. Afshar, A. Afshar, Multi-objective optimization response modeling to contaminated water distribution networks: Pressure driven versus demand driven analysis, KSCE Journal of Civil Engineering, 21(6) (2017) 2085-2096.
[11] M. Zafari, M. Tabesh, and S. Nazif, S. Minimizing the Adverse Effects of Contaminant Propagation in Water Distribution Networks Considering the Pressure-Driven Analysis Method. Journal of Water Resources Planning and Management, 143(12) (2017), p.04017072.
[12] M.A., Khaksar Fasaee, M.R. Nikoo, P. Hashempour Bakhtiari, S. Monghasemi, M. SAdegh, A novel dynamic hydrant flushing framework facilitated by categorizing contamination events Urban Water Journal, (2020), 1-13.
[13] H. Strickling, M. DiCarlo, M. Shafiee, E. Berglund, Simulation of containment and wireless emergency alerts within targeted pressure zones for water contamination management, Sustainable Cities and Society, 52(2020), 101820.
[14] J. Knowles, D. Corne, The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimization, in:  Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, 1999, pp. 98-105.
[15] J.D. Knowles, D.W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy, Evolutionary computation, 8(2) (2000) 149-172.
[16] J.E. Fieldsend, R.M. Everson, S. Singh, Using unconstrained elite archives for multiobjective optimization, IEEE Transactions on Evolutionary Computation, 7(3) (2003) 305-323.
[17] S. Tiwari, G. Fadel, K. Deb, AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization, Engineering Optimization, 43(4) (2011) 377-401.
[18] S. Tiwari, P. Koch, G. Fadel, K. Deb, AMGA: an archive-based micro genetic algorithm for multi-objective optimization, in:  Proceedings of the 10th annual conference on Genetic and evolutionary computation, 2008, pp. 729-736.
[19] M.A.H. Abdy Sayyed, R. Gupta, T.T. Tanyimboh, Noniterative Application of EPANET for Pressure Dependent Modelling of Water Distribution Systems, Water Resources Management, 29 (2015) 3227–3242.
[20] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6(2) (2002) 182-197.
[21] A. Ostfeld, E. Salomons, Optimal layout of early warning detection stations for water distribution systems security, Journal of Water Resources Planning and Management, 130(5) (2004) 377-385.