[2] J. Yan, X. Wang, T. Wang T, Compressive behavior of normal weight concrete confined by the steel face plates in SCS sandwich wall, Constr Build Mater, 171 (2018) 437-454.
[3] K. Sener, A. Varma, D. Ayhan, Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design, J Constr Steel Res, 108 (2015) 46-59.
[4] Y. Qin, G. Shu, G. Zhou, J. Han, Compressive behavior of double skin composite wall with different plate thicknesses, J Constr Steel Res, 157 (2019) 297-313.
[5] H. Akiyama, H. Sekimoto, M. Tanaka, K. Inoue, M. Fukihara, Y. Okuda, 1/10th scale model test of inner concrete structure composed of concrete filled steel bearing wall, In Transactions of the 10th international conference on structural mechanics in reactor technology (1989).
[6] N. Sasaki, H. Akiyama, M. Narikawa, K. Hara, M. Takeuchi, S. Usami, Study on a concrete filled steel structure for nuclear power plants (part 3). Shear and bending loading tests on wall member (1995).
[7] M. Takeuchi, M. Narikawa, I. Matsuo, K. Hara, S. Usami, Study on a concrete filled structure for nuclear power plants, Nuclear Engineering and Design, 179(2) (1998) 209-223.
[8] T. Fujita, A. Funakoshi, S. Akita, N. Hayashi, I. Matsuo, H. Yamaya, Experimental study on a concrete filled steel structure Part. 16 Bending Shear Tests (Effect of Bending Strength), In Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan (1998) 1125-1126.
[9] JEAC-4618, Technical code for seismic design of steel plate reinforced concrete structures: buildings and structures, Tokyo, Japan, Japanese Electric Association Nuclear Standards Committee, (2009).
[10] AISC N690-12s1, Specification for safety-related steel structures for nuclear facilities, supplement no. 1, public review draft, (2014).
[11] S. Solomon, D. Smith, A. Cusens, Flexural tests of steel-concrete-steel sandwiches. Mag Concrete Res, 28(94) (1976) 13-20.
[12] T. Oduyemi, H. Wright, An experimental investigation into the behavior of double-skin sandwich beams, J Constr Steel Res, 14(3) (1989)197-220.
[13] H. Wright, T. Oduyemi, Partial interaction analysis of double skin composite beams, J Constr Steel Res, 19(4) (1991) 253-283.
[14] J. Liew, K. Sohel, Lightweight steel–concrete–steel sandwich system with J-hook connectors, Eng Struct. 31(5) (2009) 1166-1178.
[15] K. Sohel. J. Liew, Steel–Concrete–Steel sandwich slabs with lightweight core—Static performance, Eng Struct, 33(3) (2011) 981-992.
[16] N. Subedi, N. Coyle, Improving the strength of fully composite steel-concrete-steel beam elements by increased surface roughness—an experimental study, Eng Struct, 24(10) (2002) 1349-1355.
[17] G. Vasdravellis, B. Uy, E. Tan, B. Kirkland, Behavior and design of composite beams subjected to negative bending and compression, J Constr Steel Res, 79 (2012) 34-47.
[18] M. Xie M, N. Foundoukos, J. Chapman, Static tests on steel–concrete–steel sandwich beams, J Constr Steel Res, 63(6) (2007 )735-750.
[19] M. Xie, N. Foundoukos, J. Chapman, Experimental and numerical investigation on the shear behavior of friction-welded bar–plate connections embedded in concrete, J Constr Steel Res, 61(5) (2005) 625-649.
[20] O. Dogan, T. Roberts, Comparing experimental deformations of steel-concrete-steel sandwich beams with full and partial interaction theories, Int J of Phys Sci, 5(10) (2010) 1544-1557.
[21] Y. Wang, J. Liew, S Lee, Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading, International Journal of Impact Engineering 76 (2015) 221-231.
[22] K. Sener, A. Varma, J. Seo, Experimental and numerical investigation of the shear behavior of steel-plate composite (SC) beams without shear reinforcement, Eng Struct, 127 (2016) 495-509.
[23] K. Sener, A. Varma, Steel-plate composite walls: Experimental database and design for out-of-plane shear, J Constr Steel Res, 100 (2014)197-210.
[24] J. Yan, J. Liew, M. Zhang, K. Sohel, Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures. Mater Struct, 48(5) (2015) 1523-1544.
[25] J. Yan, J. Liew, M. Zhang, Tensile resistance of J-hook connectors used in Steel-Concrete-Steel sandwich structure, J Constr Steel Res, 100 (2014)146-62.
[26] J. Yan, Z. Wang, T. Wang, X, Wang, Shear and tensile behaviors of headed stud connectors in double skin composite shear wall, Steel Compos Struct, 26(6) (2018) 759-769.
[27] J. Yan, J. Liew, Design and behavior of steel–concrete–steel sandwich plates subject to concentrated loads, Compos Struct, 150 (2016) 139-152.
[28] J. Turmo, J Lozano, E. Mirambell, D. Xu, Modeling composite beams with partial interaction, J Constr Steel Res, 114 (2015) 380-393.
[29] S. Sabouri, Y. Jahani, A. Bhowmick, Partial interaction theory to analyze composite (steel–concrete) shear wall systems under pure out-of-plane loadings, Thin-Walled Structures 104 (2016) 211-224.
[30] E. Kurt, A. Varma, P. Booth, A. Whittaker, In-plane behavior and design of rectangular SC wall piers without boundary elements. J Struct Eng, 142(6) (2016) 04016026.
[31] Q. Zhao, A. Astaneh, Cyclic behavior of traditional and innovative composite shear walls, J Struct Eng, 130(2) (2004) 271-284.
[32] W. Zhao, Q. Guo, Z. Huang, L. Tan, J. Chen, Y. Ye, Hysteretic model for steel–concrete composite shear walls subjected to in-plane cyclic loading, Eng Struct, 106 (2016) 461-470.
[33] X. Ji, X. Cheng, X. Jia, A. Varma, Cyclic in-plane shear behavior of double-skin composite walls in high-rise buildings. J Struct Eng, 143(6) (2017) 04017025.
[34] S. Epackachi, A. Whittaker, A. Aref, Seismic analysis and design of steel-plate concrete composite shear wall piers, Eng Struct, 133 (2017) 105-123.
[35] S. Epackachi, N. Nguyen, E. Kurt, A. Whittaker, A. Varma, In-plane seismic behavior of rectangular steel-plate composite wall piers, J Struct Eng, 141(7) (2014) 04014176.
[36] S. Epackachi, A. Whittaker, A. Varma, E. Kurt, Finite element modeling of steel-plate concrete composite wall piers, Eng Struct, 100 (2015) 369-384
[37] Z. Huang, J. Liew, Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors, J Constr Steel Res, 124: (2016)142-162.
[38] Y. Qin, Y. Li, Y. Su, X. Lan, Y. Wu, X. Wang, Compressive behavior of profiled double skin composite wall. Steel Compos Struct, 30(5) (2019) 405-416.
[39] Y. Qin, G. Shu, X. Zhou, J. Han, Y. He, Height-thickness ratio on axial behavior of composite wall with truss connector, Steel Compos Struct, 30(4) (2019) 315-325.
[40] ACI 318-05, Building code requirements for structural concrete and commentary –ACI 318R-05, American concrete institute, Farming Hills, MI, USA (2005).
[41] AWS, Structural Welding Code—Steel. American Welding Society (AWS), D1 Committee on Structural Welding (2010).
[42] K. Zhang, A. Varma, S. Malushte, S. Gallocher, Effect of shear connectors on local buckling and composite action in steel concrete composite walls, Nucl. Eng, 269 (2014) 231-239.
[43] Eurocode 4, Design of composite steel and concrete structures–Part 2: General rules and rules for bridges. SòTN Bratislava
(2009).
[44] A. Varma, K. Sener, K. Zhang, K. Coogler, S. Malushte, Out-of-plane shear behavior of SC composite structures, International Association for Structural Mechanics in Reactor Technology. (2011).