ارزیابی حساسیت لرزه‌ای قاب‌های فولادی با مهاربند همگرا نسبت به متغیرهای تصادفی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی نوشیروانی بابل

چکیده

عوامل زیادی بر پاسخ سازه‌ها در برابر بار لرزه‌ای تأثیر گذارند. روش‌های مختلفی برای ارزیابی تأثیر پارامترهای مختلف بر رفتار سازه وجود دارد. یکی از این روش‌ها انجام تحلیل حساسیت است. تحلیل حساسیت این امکان را فراهم می‌کند که بازه تغییرات پاسخ سازه نسبت به تغییرات متغیرهای مورد نظر تخمین زده شود. هدف از این تحقیق ارزیابی حساسیت قاب‌های فولادی با مهاربند همگرا نسبت به متغیرهای تصادفی تحت یک رکورد زلزله است. قاب‌های دوبعدی 10 طبقه با سیستم مهاربندی همگرای دوگانه با مهاربند ضربدری، هفتی، هشتی و قطری پس از طراحی و مدل‌سازی با استفاده از دو روش تحلیل حساسیت مونت ‌کارلو و FOSM تحلیل ‌شده و حساسیت پاسخ آن‌ها نسبت به متغیرهای تصادفی ارزیابی شده است. همچنین دقت تحلیل حساسیت به روش FOSM نسبت به تحلیل مونت ‌کارلو مقایسه و بحث شده است. تنش تسلیم فولاد، مدول الاستیسیته فولاد، بار مرده، بار زنده، ضریب میرایی و طول دهانه به‌ عنوان متغیرهای تصادفی در نظر گرفته ‌شده و تأثیر آن‌ها بر پریود سازه‌ها، ماکزیمم جابجایی بام و ماکزیمم برش پایه بررسی شده است. نتایج نشان می‌دهد تأثیر متغیرهای تصادفی بر ماکزیمم جابجایی بام بیشتر از ماکزیمم برش پایه و پریود سازه است. حساسیت ماکزیمم برش پایه نسبت به متغیرهای تصادفی در قاب مهاربندی همگرای ضربدری بیشتر از سایر سیستم‌های سازه‌ای مورد بحث این تحقیق است. روش FOSM در برآورد حساسیت پریود سازه‌ها نزدیک‌ترین نتیجه به روش مونت ‌کارلو را نسبت به پارامترهای ماکزیمم جابجایی بام و ماکزیمم برش پایه دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the seismic sensitivity of steel frame with converging bracing to random variables

نویسندگان [English]

  • majid moradi
  • Hamidreza Tavakoli
babol university
چکیده [English]

Structural response to seismic load is one of the tasks of structural and earthquake engineers. Many factors affect the response of structures to seismic load. Seismic load, structural system, geometric characteristics and materials are examples that affect the response of structures to seismic load. The effect of each of these cases can be determined by sensitivity analysis. The purpose of this study was to evaluate the sensitivity of steel frame with converging braid compared to random variables under a seismic load. 10-story frame types with the convergent bracing system (four types) are analyzed after design and modeling using Monte Carlo and FOSM methods. Then the sensitivity of their response to random variables is evaluated. In this study, two-dimensional frames for sensitivity analysis were used. Also, the sensitivity analysis of the FOSM method is compared to the Monte Carlo analysis. The steel yield stress, the steel elastic modulus, the dead load, the live load, the damping coefficient and the length of the span are considered as random variables and their impact on the period of the structures, the maximum displacement of the roof and the maximum base shear have been investigated. The results show that the effect of random variables on the maximum Roof displacement is higher. The maximum sensitivity of the base shear to the random variables in the X convergent brace is more than the other structural systems, and the FOSM method has the least error in estimating the periodicity of the structures with the lowest error compared to the maximum roof displacement and the maximum base shear. The general results of the analysis show that steel yield stress, dead load, and damping ratio have the most effect on the response of steel bracing frames, so they should be carefully considered in structural calculations. This sensitivity is lower in live load, span length, and elasticity modulus of steel.

کلیدواژه‌ها [English]

  • Sensitivity analysis
  • Bracing steel frame
  • Random variables
  • Structural response
[1] H. Tavakoli, M.M. Afrapoli, Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse, Engineering Failure Analysis, 83 (2018) 88-101.
[2] H. Tavakoli, M.T. Amiri, G. Abdollahzade, A. Janalizade, Site effect microzonation of Babol, Iran, GEOMECHANICS AND ENGINEERING, 11(6) (2016) 821-845.
[3] M. Moradi, H. Tavakoli, G. AbdollahZade, Sensitivity analysis of the failure time of reinforcement concrete frame under postearthquake fire loading, Structural Concrete,  (2019).
[4] K.-C. Lin, C.-C.J. Lin, J.-Y. Chen, H.-Y. Chang, Seismic reliability of steel framed buildings, Structural safety, 32(3) (2010) 174-182.
[5] H.-Y. Chang, C.-C.J. Lin, K.-C. Lin, J.-Y. Chen, Role of accidental torsion in seismic reliability assessment for steel buildings, Steel and composite structures, 9(5) (2009) 457-471.
[6] E.M. Güneyisi, Seismic reliability of steel moment resisting framed buildings retrofitted with buckling restrained braces, Earthquake Engineering & Structural Dynamics, 41(5) (2012) 853-874.
[7] A.S. Nowak, K.R. Collins, Reliability of structures, CRC Press, 2012.
[8] H. Zhang, B.R. Ellingwood, K.J. Rasmussen, System reliabilities in steel structural frame design by inelastic analysis, Engineering Structures, 81 (2014) 341-348.
[9] J.T. Putresza, P. Kolakowski, Sensitivity analysis of frame structures (virtual distortion method approach), International Journal for Numerical Methods in Engineering, 50(6) (2001) 1307-1329.
[10] B. Bhattacharyya, S. Chakraborty, Sensitivity statistics of 3D structures under parametric uncertainty, Journal of engineering mechanics, 127(9) (2001) 909-914.
[11] C. Xu, J. Deng, S. Peng, C. Li, Seismic fragility analysis of steel reinforced concrete frame structures based on different engineering demand parameters, Journal of Building Engineering, 20 (2018) 736-749.
[12] I. Hajirasouliha, K. Pilakoutas, R.K. Mohammadi, Effects of uncertainties on seismic behaviour of optimum designed braced steel frames, Steel and Composite Structures, 20(2) (2016) 317-335.
[13] J. Kim, J.-H. Park, T.-H. Lee, Sensitivity analysis of steel buildings subjected to column loss, Engineering Structures, 33(2) (2011) 421-432.
[14] Z. Kala, J. Valeš, Imperfection sensitivity analysis of steel columns at ultimate limit state, Archives of Civil and Mechanical Engineering, 18(4) (2018) 1207-1218.
[15] K.A. Porter, J.L. Beck, R.V. Shaikhutdinov, Sensitivity of building loss estimates to major uncertain variables, Earthquake Spectra, 18(4) (2002) 719-743.
[16] Z. Kala, Sensitivity assessment of steel members under compression, Engineering Structures, 31(6) (2009) 1344-1348.
[17] J.E. Padgett, R. DesRoches, Sensitivity of seismic response and fragility to parameter uncertainty, Journal of Structural Engineering, 133(12) (2007) 1710-1718.
[18] Z. Kala, Global sensitivity analysis in stability problems of steel frame structures, Journal of Civil Engineering and Management, 22(3) (2016) 417-424.
[19] D. Celarec, P. Ricci, M. Dolšek, The sensitivity of seismic response parameters to the uncertain modelling variables of masonry-infilled reinforced concrete frames, Engineering Structures, 35 (2012) 165-177.
[20] T.H. Lee, K.M. Mosalam, Seismic demand sensitivity of reinforced concrete shear‐wall building using FOSM method, Earthquake engineering & structural dynamics, 34(14) (2005) 1719-1736.
[21] R.J. Larijan, H.D. Nasserabadi, I. Aghayan, Progressive collapse analysis of buildings with concentric and eccentric braced frames, Structural Engineering and Mechanics, 61(6) (2017) 755-763.
[22] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, 264 (2006).
[23] I. Iervolino, C.A. Cornell, Record selection for nonlinear seismic analysis of structures, Earthquake Spectra, 21(3) (2005) 685-713.
[24] Y. Xie, R. DesRoches, Sensitivity of seismic demands and fragility estimates of a typical California highway bridge to uncertainties in its soil-structure interaction modeling, Engineering Structures, 189 (2019) 605-617.