[1] Ohtsu, Y. Yasuda, M. Takahashi, Flow characteristics of skimming flows in stepped channels, Journal of Hydraulic Engineering, 130(9) (2004) 860-869.
[2] C. Chinnarasri, S. Donjadee, U. Israngkura, Hydraulic characteristics of gabion-stepped weirs, Journal of Hydraulic Engineering, 134(8) (2008) 1147-1152.
[3] F. Salmasi, M. Chamani, D.F. Zadeh, Experimental study of energy dissipation over stepped gabion spillways with low heights, Iranian Journal of Science and Technology. Transactions of Civil Engineering, 36(C2) (2012) 253.
[4] H.I. Mohamed, Flow over gabion weirs, Journal of Irrigation and Drainage Engineering, 136(8) (2009) 573-577.
[5] R.M. Sorensen, Stepped spillway hydraulic model investigation, Journal of Hydraulic Engineering, 111(12) (1985) 1461-1472.
[6] W. Rand, Flow geometry at straight drop spillways, in: Proceedings of the American Society of Civil Engineers, ASCE, 1955, pp. 1-13.
[7] L.A. Peyras, P. Royet, G. Degoutte, Flow and energy dissipation over stepped gabion weirs, Journal of Hydraulic Engineering, 118(5) (1992) 707-717.
[8] G.C. Christodoulou, Energy dissipation on stepped spillways, Journal of Hydraulic Engineering, 119(5) (1993) 644-650.
[9] M. Chamani, N. Rajaratnam, Characteristics of skimming flow over stepped spillways, Journal of Hydraulic Engineering, 125(4) (1999) 361-368.
[10] U. Fratino, A. Piccinni, G. de Marinis, Dissipation efficiency of stepped spillways, in: H.-E. Minor and W. Hager, Proceeding of the International Workshop on Hydraulics of Stepped Spillways, IAHR, AA Balkema/Rottersam/Brookfield, Zurich, Switzerland, 2000.
[11] T. Chaturabul, Experimental study of flow behavior through stepped channels with end sills, MS Thesis, King Mongkut’s University of Technology, Thailand, 2002.
[12] C. Chinnarasri, S. Wongwises, Flow Patterns and Energy Dissipation over Various Stepped Chutes, Journal of Irrigation and Drainage Engineering, 132(1) (2006) 70-76.
[13] A. Hamedi, A. Mansoori, I. Malekmohamadi, H. Roshanaei, Estimating energy dissipation in stepped spillways with reverse inclined steps and end sill, in: World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, 2011, 2528-2537.
[14] M. Tuna, Effect of offtake channel base angle of stepped spillway on scour hole, Iranian Journal of Science and Technology. Transactions of Civil Engineering, 36(C2) (2012) 239.
[15] M.C. Tuna, M.E. Emiroglu, Effect of step geometry on local scour downstream of stepped chutes, Arabian Journal for Science and Engineering, 38(3) (2013) 579-588.
[16] H.K. Zare, J.C. Doering, Effect of rounding edges of stepped spillways on the flow characteristics, Canadian Journal of Civil Engineering, 39(2) (2012) 140-153.
[17] S. Felder, H. Chanson, Effects of Step Pool Porosity upon Flow Aeration and Energy Dissipation on Pooled Stepped Spillways, Journal of Hydraulic Engineering, 140(4) (2014) 04014002.
[18] D. Wuthrich, H. Chanson, Aeration performances of a gabion stepped weir with and without capping, Environmental Fluid Mechanics, 15(4) (2014) 711-730.
[19] G. Zhang, H. Chanson, Gabion stepped spillway: interactions between free-surface, cavity, and seepage flows, Journal of Hydraulic Engineering, 142(5) (2016) 06016002.
[20] E. Asadi, A.H. Dalir, D. Farsadizadeh, Y. Hassanzaheh, F. Salmasi, Energy dissipation of skimming flow with different sill dimensions in stepped spillway model, International Journal of Agriculture and Biosciences, 4(3) (2015) 118-121.
[21] E.A. Elnikhely, Investigation and analysis of scour downstream of a spillway, Ain Shams Engineering Journal, 9(4) (2018) 2275-2282.
[22] G.M.A. Aal, M. Sobeah, E. Helal, M. El-Fooly, Improving energy dissipation on stepped spillways using breakers, Ain Shams Engineering Journal, (2017).
[23] S.H. Rajaei, S.R. Khodashenas, K. Esmaili, Laboratory Analysis of Energy Losses in Gabion Steeped Spillways With and Without Sedimentation at Upstream, Iranian Journal of Irrigation and Drainage, 11(5) (2017) 900-910 (In Persian).
[24] M. Sadrianzadeh, M. Mahmoudian, A. Fathi, H. Eslami, Investigation of the Concentration of Mixed Air With the Flow of Water at Different Points on the Stepped Spillway in the Flow Non-falling With the FLUENT Model and a Physical Model, Journal of Water Engineering, 4(2) (2016) 50-58 (In Persian).
[25] C. Chinnarasri, S. Wongwises, Flow regimes and energy loss on chutes with upward inclined steps, Canadian Journal of Civil Engineering, 31(5) (2004) 870-879.
[26] D. Stephenson, Gabion energy dissipators, in: Proc. 13th ICOLD Congress, 1979, pp. 33-43.
[27] C.l. Chen, Momentum and energy coefficients based on power-law velocity profile, Journal of Hydraulic Engineering, 118(11) (1992) 1571-1584.
[28] H. Chanson, Hydraulics of skimming flows over stepped channels and spillways, Journal of Hydraulic Research, 32(3) (1994) 445-460.
[29] N. Rajaratnam, Skimming flow in stepped spillways, Journal of Hydraulic Engineering, 116(4) (1990) 587-591.
[30] C. Chinnarasri, Assessing the flow resistance of skimming flow on the step faces of stepped spillways, Dam Engineering, 12(4) (2002) 303-322.
[31] I.T.S. Essery, M.W. Horner, The hydraulic design of stepped spillways, Construction Industry Research and Information Association, 1971.
[32] E. Beitz, M. Lawless, Hydraulic model study for dam on GHFL 3791 Isaac River at Burton Gorge, Water Resources Commission Report, (1992).
[33] J.C. Bathurst, Flow resistance of large-scale roughness, Journal of Hydraulics Division, 104(12) (1978) 1587-1603.
[34] J.C. Bathurst, D.B. Simons, R.-M. Li, Resistance equation for large-scale roughness, Journal of Hydraulics Division, 107(12) (1981) 1593-1613.
[35] S. Pagliara, P. Chiavaccini, Energy dissipation on block ramps, Journal of Hydraulic Engineering, 132(1) (2006) 41-48.