کنترل ارتعاشات لرزه‌ای سازه‌های غیرخطی با استفاده ازمکانیزم میراگر جرمی هماهنگ شده نیمه فعال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشگاه محقق اردبیلی

2 کارشناسی ارشد، گروه مهندسی عمران، دانشگاه محقق اردبیلی

چکیده

در این مقاله به طراحی مکانیزم میراگر جرمی هماهنگ شده ی نیمه فعال (SATMD) با میرایی متغیر برای کاهش پاسخ سازه های غیرخطی تحت اثر زلزله پرداخته شده است. جهت تعیین دستورهای مناسب برای انتخاب میرایی در هر لحظه، الگوریتم کنترل نیمه فعالی برای سازه‌های غیرخطی بر مبنای الگوریتم بهینه ی آنی غیرخطی و قانون کنترل برشی تهیه شده است که برای طراحی بهینه ی سیستم کنترل، پارامترهای طراحی از حل یک مسأله ی بهینه‌سازی با تابع هدف کمینه کردن ماکزیمم پاسخ سازه با استفاده از الگوریتم ژنتیک (GA) تعیین شده است. به منظور آنالیز عددی و ارزیابی روش پیشنهادی، قاب 8 طبقه برشی دو بعدی، با رفتار غیرخطی هیسترسیس تحت اثر اغتشاش سفید در نظر گرفته شده و به طراحی مکانیزم SATMD پرداخته شده است. نتایج بررسی‌ها نشان می‌دهد که الگوریتم پیشنهاد شده دارای کارایی مناسب برای طراحی سیستم SATMD با میرایی متغیر برای سازه های غیرخطی می باشد. همچنین مقایسه ی عملکرد مکانیزم SATMD با میراگر جرمی هماهنگ شده غیر فعال و فعال نشان می دهد که عملکرد سیستم SATMD در کاهش پاسخ‌های سازه‌های غیرخطی بهتر از عملکرد سیستم میراگر جرمی هماهنگ شده غیرفعال بوده اما در مقایسه با مکانیزم میراگر جرمی فعال عملکرد ضعیف تری داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Seismic Vibration Control of Nonlinear Structures Using Semi-Active Tuned Mass Dampers

نویسندگان [English]

  • Mohtasham Mohebbi 1
  • Hamed Rasouli 2
  • Solmaz Moradpour 2
1 Assistant Professor, Engineering Department, University of Mohaghegh Ardabili
2 M.Sc. Student, Engineering Department, University of Mohaghegh Ardabili
چکیده [English]

In this paper, designing semi-active tuned mass damper (SATMD) for reducing the response of nonlinear frame structures under earthquake excitations has been studied. The semi- active characteristic of the control system has been achieved by modifying the damping in each time step. To determine the appropriate command signals for selecting the damping coefficient of SATMD, a semi-active control algorithm based on nonlinear instantaneous optimal control and Clipped Optimal Control concept has been developed. Also for optimal design of the control system, the design parameters have been determined by solving an optimization problem that minimizes the maximum response of the structure using genetic algorithm (GA). As numerical example, for an eight-storey nonlinear shear frame with bilinear hysteresis behavior under white noise excitation, SATMD has been designed. The results of numerical simulations show the capability of the proposed method for determination of control signal as well as the effectiveness of the SATMD mechanism in reducing the response of the nonlinear structures under earthquake excitation. In addition, comparing the performance of SATMD with those of passive and active tuned mass dampers shows that SATMD has worked better than passive tuned mass damper while active mass damper shows better performance than SATMD

کلیدواژه‌ها [English]

  • Semi-active tuned mass damper؛ Nonlinear structures؛ Semi-active control؛ Instantaneous optimal control
  • Clipped optimal control
[1] Zuk, W.M.; “Kinetic structures”, ASCE, J, Civil. Eng., 38(7), pp. 62- 64, 1968.
[2] Yao,J.T.P.; “Concept of structural control”, J. Struct. Division, ASCE, 98, ST 7, pp. 1567-1574, 1972.
[3] Soong, T.T.; “Active Structural Control: Theory and Practice”, 1st edn., Longman Scientific & Technical, UK and JohnWiley & Sons, New York, 1990.
[4] Symans, M.D. and Constantinou, M.C.; “Development and experimental study of semi-active fluid damping devices for seismic protection of structures”, Nat. Center for Earthquake Engrg. Res., Tech. Report NCEER-95- 0011, 1995.
[5] Sadek, F. and Mohraz, B.; “Semi-active control algorithms for structures with variable dampers”, J. Engrg. Mech. ASCE, 124 (9), pp. 981- 990, 1998.
[6] Jansen, L.M. and Dyke, S.J.; “Semi-active control strategies for the MR damper: A comparative study”, J. Engrg. Mech. ASCE, 126(8), pp. 795- 803, 2000.
[7] Connor, J.J., “An Introduction to structural motion control”, IT University Press, 2001.
[8] McNamara, R. J.; “Tuned mass dampers for buildings”, ASCE J. Struct. Division, 103(9), pp. 1785- 1798, 1977.
[9] Soong, T.T. and Dargush, G.F.; “Passive Energy Dissipation Systems in Structural Engineering”, John Wiley and Sons, New York, 1997.
[10] Den Hartog J.P; “Mechanical Vibrations”, 4th edn, McGraw- Hill, New York, 1956.
[11] Warburton G.B.; “Optimal absorber parameters for various combination of response and excitation parameters”, Earthquake Eng. & Struc. Dyn., pp. 197- 217, 1982.
[12] Sadek F. and Mohraz, B.; “A method of estimating the parameters of tuned mass dampers for seismic application”, Earthquake Eng. & Struc. Dyn., 26, pp. 617- 635, 1997.
[13] Pinkaew, T. and Fujino, Y.; “Effectiveness of semi-active tuned mass dampers under harmonic excitation”, Engrg. Struct. 23, pp. 850- 856., 2001.
[14] Kaynia N.M., Veneziano D. and Biggs J.M ; “Seismic effectiveness of tuned mass dampers”, J. Struct. Division, ASCE,107(8), pp. 1465- 84, 1981.
[15] Sladek, J.R. and Klinger, R.E.; “Effect of tuned-mass dampers on seismic response”, J. Struct. Eng., ASCE, 109(9), pp. 2004- 2009, 1983.
[16] Soto-Brito, R. and Ruiz S.E.; “Influence of ground motion intensity on the effectiveness of tuned mass dampers”, Earthquake Eng. & Struct. Dyn., 28, pp. 1255- 1271, 1999.
[17] Lukkunaprasit, P. and Wanitkorkul, A.; “Inelastic buildings with tuned mass dampers under moderate ground motions from distant earthquakes”, Earthquake Engrg. and Struct. Dyn., 30, pp. 537- 51, 2001.
[18] Mohebbi, M. and Joghataie, A.; “Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms”, Struct. Design Tall Spec. Build., 21(1), pp. 57-76, 2012.
[19] Chang, C. C. and Yang, H. T. Y. ;“Control of buildings using active tuned mass dampers”, J. Engrg. Mech., ASCE, 121(3), pp. 355-366,1995.
[20] Reinhorn, A., Soong, T. T., Riley, M. A., Lin, R. C., Aizawa, S. and Higashino, M.; “Full scale implementation of active control. ii: Installation and performance”, J. Struc. Eng., ASCE, 119(6), pp. 1935– 1960, 1993.
[21] Spencer, B.F. and Nagarajaiah, S.; “State of the art of structural control”, J. Struct. Eng., ASCE, 129(7), pp. 845- 856, 2003
[22] Hrovat, D., Barak, P. and Rabins, M.; “Semi-active versus passive or active tuned mass dampers for structural control”, J. Engrg. Mech., ASCE, pp. 109- 691, 1983.
[23] Abe, M.; “Semi-active tuned mass dampers for seismic protection of civil structures”, Earthquake Eng. & Struc. Dyn, 25(7), pp. 743- 749, 1996.
[24] Runlin, Y. , Xiyuan, Z. and Xihui, Z.; “Seismic structural control using semi-active tuned mass dampers”, Earthquake Eng & Eng Vib., 1(1), pp. 111– 118, 2002.
[25] Aldemir, U.; “Optimal control of structures with semi-active-tuned mass dampers”, J. Sound Vibrat., 266(4), pp. 847- 874, 2003.
[26] Setareh. M; “Application of semi-active tuned mass dampers to base-excited systems”, Earthquake Eng. & Struct Dyn., 30(3), pp. 449– 462, 2001.
[27] Lin, P.Y., Chung, L.L. and Loh, C.H.; “Semi-active control of building structures with semi-active tuned mass damper”, Computer-aided Civil and Infrastruct. Eng., 20(1), pp. 35– 51, 2005.
[28] Dyke, S. J., Spencer, B. F., Sain, M. K. and Carlson, J.D.; “Modeling and control of magnetorheological dampers for seismic response reduction”, Smart Materials and Struct., 5, pp. 565– 575, 1996.
[29] Ji, H., Moon, Y., Kim, C. and Lee, I.; “Structural vibration control using semi-active tuned mass damper”, Proc Eighteenth KKCNN Symposium on Civil Engineering-KAIST6 December 18– 20, Taiwan, 2005.
[30] Chang, C. C. and Yang, H. T. Y; “Instantaneous optimal control of building frames”, J. Struct. Eng., ASCE, 120(4), pp. 1307- 1326, 1994.
[31] Joghataie, A. and Mohebbi, M.; “Optimal control of nonlinear frames by Newmark and distributed genetic algorithms”, Struct. Design Tall Spec. Build, 21 (2): pp. 77- 95., 2012.
[32] Jalili .N; “A Comparative study and analysis of semi-Active vibration control systems”, J. Vib. Acoust., 124(4), pp. 593– 605, 2002.
[33] Jansen, L.M. and Dyke, S.J.; “Semiactive control strategies for MR dampers: comparative study”, J. Engrg. Mech., ASCE, 126(8), pp. 795- 803, 2000.
[34] Koo, J.H, Setareh, M. and Murray, T.M; “In search of a suitable control methods for semi-active tuned vibration absorbers”, J. Vibrat. and Contr., (10), pp. 163- 174, 2004.
[35] Liu, Y., Waters, T.P. and Brennan, M.J.; “A comparison of semi-active damping control strategies vibration isolation of harmonic disturbances”, J. Sound Vibrat., 280(1–2), pp.
21– 39, 2005.
[36] Symans, M.D. and Constantinou, M.C.; “Semi-active control systems for seismic protection of structures: A state-of-the-art review”, J. Engrg. Struct., 21(6), pp. 469– 487, 1999.
[37] Kurata, N., Kobori, T., Takahashi, M., Niwa, N., and Midorikawa, H.; “Actual seismic response controlled building with semi-active damper system”, Earthquake Eng. & Struc. Dyn., 28, pp. 1427– 1447, 1999.
[38] Symans, M. and Constantinou, M. C.; “Seismic testing of a building structure with a semi-active fluid damper control system”, Earthquake Eng. & Struc. Dyn., 26(7), pp. 759– 777, 1999.
[39] Christopoulos, C., Rotunno, M. D. and Callafon, R. A.; “Semi-active tuned mass dampers for seismic protection of MDOF
structures controlling the damping”, Proc., 12th European Conf. on Earthquake. Engineering, paper reference, 178, 2002.
[40] Bathe KJ.; “Finite element Procedures”, Prentice‐Hall, Inc. New Jersey, 1996.
[41] Goldberg, D.E., “Genetic algorithms in search, optimization and machine Learning”, Addison- Wesley Publishing Co., Inc. Reading, Mass, 1989.