برآورد پاسخ لرزه‌ای قاب‌های خمشی فولادی در سطح آستانه فروریزش با استفاده از یک روش تحلیل پوش‌اور مودال پیشنهادی

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده مهندسی سازه، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران.

چکیده

برآورد پارامترهای تقاضای مهندسی مبتنی بر جابه‌جایی در فرآیند ارزیابی فروریزش لرزه‌ای سازه‌ها از اهمیت بالایی برخوردار است. در این پژوهش، یک روش پوش‌اور مودال به منظور برآورد این پارامترها توسعه داده می‌شود. در روش پیشنهادی، ابتدا یک معیار فروریزش برای تعیین سطح آستانه فروریزش در تحلیل‌های پوش‌اور پیشنهاد می‌گردد. این معیار براساس منحنی ظرفیت طبقات ارائه شده و تنها به مشخصات سازه وابسته است. سپس به منظور تعیین پارامترهای پاسخ مبتنی بر جابه‌جایی در سطح آستانه فروریزش سازه، یک روش ترکیب پاسخ‌های مودال ارائه می‌شود. در این روش، پاسخ‌های حاصل از تحلیل پوش‌اور مودال با ضرایب حاصل از بهینه‌سازی به صورت جبری ترکیب می‌گردند. دو روش بهینه‌سازی برخورد اجسام و بهینه‌سازی ازدحام ذرات به منظور استخراج این ضرایب مورد استفاده قرار می‌گیرند. بهینه‌سازی بر اساس نتایج تحلیل دینامیکی افزایشی سه قاب خمشی فولادی 5، 8 و 11 طبقه انجام شده است. دو قاب 9 و 12 طبقه نیز به منظور ارزیابی روش پیشنهادی مورد استفاده قرار گرفته‌اند. نتایج تحلیل‌های صورت گرفته نشان می‌دهد روش پوش‌اور پیشنهادی پروفیل دریفت و جابه‌جایی طبقات در آستانه فروریزش سازه را با دقت بسیار خوبی تخمین می‌زند. این روش بسیار کاربردی بوده و برای عموم مهندسین قابل استفاده می‌باشد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Response Evaluation of Steel Moment Resisting Frames for Collapse Prevention Level Using a Proposed Modal Pushover Analysis Method

نویسندگان [English]

  • Sassan Eshghi
  • Mohammad Mahdi Maddah
  • Alireza Garakaninezhad
Structura Engineering Research Center, International Institute of Earthquake Engineering and Seismology ( IIEES)
چکیده [English]

In this paper, a new nonlinear static (pushover) analysis method is presented to evaluate the displacement-based demands of steel moment-resisting frames (MRFs) at the collapse prevention performance level. In this method, the modal pushover responses are integrated using modal combination coefficients, which are calculated from optimization procedures. Two metaheuristic algorithms, including particle swarm optimization and colliding bodies optimization, are utilized for this purpose. In the proposed procedure, the collapse prevention performance level is obtained by a new suggested criterion, which is based on the onset of severe local damages at the structure. This criterion corresponds to occur backward shape in the story capacity curves. The modal combination coefficients are obtained from incremental dynamic analysis (IDA) results of 5, 9, and 11 story steel moment-resisting frames. The optimized modal pushover (OMPA) method is applied to two 9 and 12 story steel MRF buildings. The results showed that the proposed method is easy to implement and is accurate enough to evaluate the displacement-based responses at the CP performance level. 

کلیدواژه‌ها [English]

  • Modal pushover analysis
  • Modal combination rules
  • Optimization algorithms
  • Seismic collapse assessment
  • Mid-rise steel moment-resisting frames
  1. M. Maddah, S. Eshghi, Evaluation of a Seismic Collapse Assessment Methodology Based on the Collapsed Steel Buildings Data in Sarpol-e Zahab, Iran Earthquake, Journal of Seismology and Earthquake Engineering, 20(3) (2019) 47-59.
  2. Abbasnia, A. Tajik Davoudi, M.M. Maddah, An improved displacement-based adaptive pushover procedure for the analysis of frame buildings, Journal of Earthquake Engineering, 18(7) (2014) 987-1008.
  3. ASCE 07. Minimum design loads and associated criteria for buildings and other structures, in, Reston, Virginia: American Society of Civil Engineers, 2016.
  4. Eshghi, M.M. Maddah, A study on influencing factors for simplified seismic collapse risk assessment of steel moment-resisting frames with intermediate ductility, International Journal of Structural Integrity, (2019).
  5. Pekelnicky, S.D. Engineers, S. Chris Poland, N.D. Engineers, ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings, Proceedings of the SEAOC, (2012).
  6. Krawinkler, G. Seneviratna, Pros and cons of a pushover analysis of seismic performance evaluation, Engineering structures, 20(4-6) (1998) 452-464.
  7. Antoniou, R. Pinho, Development and verification of a displacement-based adaptive pushover procedure, Journal of earthquake engineering, 8(05) (2004) 643-661.
  8. A. Shayanfar, M. Rakhshanimehr, M. Ashoory, Adaptive Load Patterns Versus Non-adaptive Load Patterns for Pushover Analysis of Building, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(1) (2019) 23-36.
  9. K. Chopra, R.K. Goel, A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary evaluation, PEER 2001/03, (2001).
  10. A. Amini, M. Poursha, Adaptive Force-Based Multimode Pushover Analysis for Seismic Evaluation of Midrise Buildings, Journal of Structural Engineering, 144(8) (2018) 04018093.
  11. Liu, J. Kuang, Estimating seismic demands of singly symmetric buildings by spectrum-based pushover analysis, Bulletin of Earthquake Engineering, 17(4) (2019) 2093-2113.
  12. Tajik Davoudi, R. Abbasnia, A. Sarvghad‐Moghadam, M.M. Maddah, A. Khodam, An alternative modal combination rule for adaptive pushover analysis, The Structural Design of Tall and Special Buildings. 25(7) (2016) 325-339.
  13. Guan, W. Liu, H. Du, J. Cui, J. Wang, Combination model for conventional pushover analysis considering higher mode vibration effects, The Structural Design of Tall and Special Buildings, 28(12) (2019) e1625.
  14. Chintanapakdee, A.K. Chopra, Evaluation of modal pushover analysis using generic frames, Earthquake engineering & structural dynamics, 32(3) (2003) 417-442.
  15. Fajfar, A nonlinear analysis method for performance-based seismic design, Earthquake spectra, 16(3) (573-592), (2000).
  16. L, Sidesway collapse of deteriorating structural systems under seismic excitations, 2013.
  17. Suita, S. Yamada, M. Tada, K. Kasai, Y. Matsuoka, E. Sato, E-Defense tests on full-scale steel buildings: Part 2-Collapse experiments on moment frames, in: Structural Engineering Research Frontiers, 2007, pp. 1-12.
  18. Karamanci, D.G. Lignos, Computational approach for collapse assessment of concentrically braced frames in seismic regions, Journal of Structural Engineering, 140(8)) (2014) (A4014019).
  19. Maddah MM, Eshghi S. Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames. Earthquakes and Structures 2020; Accepted.
  20. T. Council, U.S.F.E.M. Agency, Quantification of building seismic performance factors, US Department of Homeland Security, FEMA, 2009.
  21. S. Code, Iranian code of practice for seismic resistant design of buildings, Standard No. 2800, in, Standard: Tehran, Iran, 2007.
  22. National building regulations of Iran - the 10th issue, Design and execution of steel structures. 4th ed., in, Tehran, Iran: Office of National Building Regulations, 2013.
  23. Ministry of Housing and Urban Development. National building regulations of Iran - the 6th issue, loads on the building. 3rd ed. Tehran, Iran: Ministry of Housing and Urban Development, Office of National Building Regulations; 2013.
  24. G. Lignos, H. Krawinkler, Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137(11) (2011) 1291-1302.
  25. G. Lignos, H. Krawinkler, A steel database for component deterioration of tubular hollow square steel columns under varying axial load for collapse assessment of steel structures under earthquakes, in: Proc. 7th Int. Conf. on Urban Earthquake Engineering (7CUEE), Center for Urban Earthquake Engineering, Tokyo Institute of Technology Tokyo, 2010.
  26. G. Lignos, H. Krawinkler, A database in support of modeling of component deterioration for collapse prediction of steel frame structures, in: Structural Engineering Research Frontiers, 2007, pp. 1-12.
  27. F. Ibarra, R.A. Medina, H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration, Earthquake engineering & structural dynamics, 34(12) (2005) 1489-1511.
  28. Ibarra LF. Global collapse of frame structures under seismic excitations. PhD Thesis of Stanford University; 2005.
  29. L. Eads, D. Lignos, Pushover and dynamic analyses of 2-story moment frame with panel zones and RBS, in, Stanford University, CA, available at:

http://opensees.berkeley.edu/wiki/index.php/Pushover_and_Dynamic_Analyses_of_2-Story_Moment_Frame_with_Panel_Zones_and_RBS (accessed March 4, 2019), 2012.

  1. J. Venture, State of the art report on systems performance of steel moment frames subject to earthquake ground shaking, FEMA 355C, (2000).
  2. Elkady, D.G. Lignos, Modeling of the composite action in fully restrained beam‐to‐column connections: implications in the seismic design and collapse capacity of steel special moment frames, Earthquake Engineering & Structural Dynamics, 43(13) (2014) 1935-1954.
  3. Shafei, F. Zareian, D.G. Lignos, A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems, Engineering Structures, 33(4) (2011) 1107-1116.
  4. Gupta, H. Krawinkler, Seismic demands for the performance evaluation of steel moment resisting frame structures, Stanford University, 1998.
  5. Eads L, Ribeiro F, Barbosa A. Dynamic analysis of 2-Story moment frame. Stanford University 2013. http://opensees.berkeley.edu/wiki/index.php/Dynamic_
    Analysis_of_2-Story_Moment_Frame
    (accessed March 4, 2019).
  6. G. Lignos, T. Hikino, Y. Matsuoka, M. Nakashima, Collapse assessment of steel moment frames based on E-Defense full-scale shake table collapse tests, Journal of Structural Engineering, 139(1) (2013) 120-132.
  7. Eberhart, J. Kennedy, A new optimizer using particle swarm theory. MHS’95: Proceedings of the Sixth International Symposium on. 1995 Oct 4–6; Nagoya, Japan, in, IEEE, 1995.
  8. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization, 39(3) (2007) 459-471.
  9. -Y. Yun, R.O. Hamburger, C.A. Cornell, D.A. Foutch, Seismic performance evaluation for steel moment frames, Journal of Structural Engineering, 128(4) (2002) 534-545.