طرح بهینه و بررسی عملکرد میراگرهای ویسکوز در سازه‌های فولادی بر اساس هزینه دوره عمر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

در سال­‌های اخیر سعی شده است عملکرد مورد انتظار سازه­‌ها تحت خطرات لرزه‌­ای به صورت معیار­های اقتصادی و اجتماعی بیان شوند. بر این اساس، در این پژوهش الگوریتمی برای طراحی بهینه میراگرهای ویسکوز با هدف رسیدن به حداقل هزینه کل ارائه شده است. برای این منظور یک مدل هزینه مناسب جهت تعیین هزینه اولیه مجهز کردن سازه به میراگر­های ویسکوز ارائه شده و هزینه­‌های مورد انتظار در اثر زلزله­‌های محتمل در دوره­ی عمر سازه با استفاده از تحلیل هزینه دوره­ی عمر (LCCA) تخمین زده شده است. نتایج این تحلیل در یک الگوریتم بهینه­‌سازی با هدف دستیابی به سازه­ای با هزینه­‌ی کل حداقل مورد استفاده قرار گرفته است. برای ارزیابی رفتار لرزه‌ای سازه‌ها از روش زمان­ دوام به عنوان یک روش تحلیل دینامیکی که نیازمند حجم محاسبات بسیار کمتری در مقایسه با روش‌های معمول تاریخچه زمانی می‌باشد، استفاده شده است. سه قاب خمشی 15 و 7 ،3 طبقه‌­ی منظم دارای ضعف در طراحی اولیه به صورت غیرخطی مدل شده و با به کارگیری الگوریتم ژنتیک، چینش میراگر­های ویسکوز خطی و میراگر­های ویسکوز غیر­خطی به همراه توان سرعت (آلفا) در ارتفاع ساختمان به گونه‌­ای تعیین شده است که سازه‌­ی به دست آمده کمترین هزینه­‌ی کل را در دوره عمر خود داشته باشد. همچنین از دو روش فرم ­بسته به نام‌­های طراحی میراگر بر مبنای انرژی و طراحی بر اساس جابجایی مستقیم نیز برای طراحی میراگر­ها استفاده شده است. در انتها عملکرد سازه‌­های مجهز به میراگر­های طراحی شده بر اساس روش‌های مختلف تحت دوازده رکورد زلزله حوزه دور و حوزه نزدیک بدون پالس مورد ارزیابی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Design and Performance Assessment of Viscous Dampers in Steel Frames Based on Life Cycle Cost

نویسندگان [English]

  • Narjes Ahadzadeh kolour
  • Mohammad Charkhtab Basim
  • MohammadReza Chenaghlou
Faculty of Civil Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

In recent years, it is tried to express the expected performance of structures as financial and social measures. In this study, an algorithm for the optimal design of viscous dampers with the goal of achieving minimum total cost is presented. For this purpose, an appropriate cost model to determine the initial cost of equipping structures with viscous dampers has been presented and the expected costs of the structure due to possible earthquakes over its life cycle have been estimated using life cycle cost analysis (LCCA). The results of this analysis have been used in an optimization algorithm with the aim of achieving the minimum total cost of structures. To evaluate the seismic behavior of structures, the Endurance Time (ET) method is used as a dynamic analysis method which requires much less computation effort than conventional time history methods. In this regard, three-moment frames with 3,7 and 15 stories having weakness in initial design are modeled nonlinearly, and then, using a genetic algorithm, the optimum arrangement of linear and nonlinear viscous dampers along with the damping exponent (Alpha) is acquired. Two closed-form methods have also been used for the design of viscous dampers, namely energy-based damping design and displacement-based design. Finally, the performance of the structures has been evaluated and compared under 12 far-field and 12 near-fault ground motion records.

کلیدواژه‌ها [English]

  • Endurance Time Method
  • Life Cycle Cost Analysis
  • Structural Optimization
  • Fluid Viscous Damper
  • Genetic Algorithm
[1] H.E. Estekanchi, M.C. Basim, Optimal damper placement in steel frames by the Endurance Time method, The Structural Design of Tall and Special Buildings, 20(5) (2011) 612-630.
[2] C.Y. Seo, T.L. Karavasilis, J.M. Ricles, R. Sause, Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers, Earthquake Engineering & Structural Dynamics, 43(14) (2014) 2135-2154.
[3] D. Altieri, E. Tubaldi, E. Patelli, A. Dall’Asta, Assessment of optimal design methods of viscous damper, X International Conference on Structural Dynamics, EURODYN,  (2017).
[4] Y.-K. Wen, Y. Kang, Minimum building life-cycle cost design criteria. I: Methodology, Journal of Structural Engineering, 127(3) (2001) 330-337.
[5] Y. Takahashi, A.D. Kiureghian, A.H.S. Ang, Life‐cycle cost analysis based on a renewal model of earthquake occurrences, Earthquake engineering & structural dynamics, 33(7) (2004) 859-880.
[6] A.J. Kappos, E. Dimitrakopoulos, Feasibility of pre-earthquake strengthening of buildings based on cost-benefit and life-cycle cost analysis, with the aid of fragility curves, Natural Hazards, 45(1) (2008) 33-54.
[7] S. Silvestri, G. Gasparini, T. Trombetti, A five-step procedure for the dimensioning of viscous dampers to be inserted in building structures, 14(3) (2010) 417-447.
[8] J. Whittle, M. Williams, T. Karavasilis, A. Blakeborough, A comparison of viscous damper placement methods for improving seismic building design, Journal of Earthquake Engineering, 16(4) (2012) 540-560.
[9] J.S. Hwang, W.C. Lin, N.J. Wu, Comparison of distribution methods for viscous damping coefficients to buildings, Structure and Infrastructure Engineering, 9(1) (2013) 28-41.
[10] M. Bahmani, S.M. Zahrai, Application of a comprehensive seismic retrofit procedure for steel buildings using nonlinear viscous dampers, 17(8) (2019) 1261-1279.
[11] M.C. Basim, H.E. Estekanchi, A. Vafai, A methodology for value based seismic design of structures by the endurance time method, Scientia Iranica, 23(6) (2016) 2514-2527.
[12] H.E. Estekanchi, A. Vafaei, A.M. Sadeghazar, Endurance time method for seismic analysis and design of structures, Scientia Iranica, 11(4) (2004).
[13] W.H. Lin, A.K. Chopra, Earthquake response of elastic SDF systems with non‐linear fluid viscous dampers, Earthquake engineering & structural dynamics, 31(9) (2002) 1623-1642.
[14] C.E. Grigorian, T.S. Yang, Maximum damping forces for structures with viscous dampers under near-source earthquakes, 9(3) (2014) 491-504.
[15] FEMA440, Improvement of nonlinear static seismic analysis procedures, Federal Emergency Management Agency Region II, (2005).
[16] ASCE41-13, Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Virginia, (2013).
[17] M. Sánchez-Silva, R. Rackwitz, Socioeconomic implications of life quality index in design of optimum structures to withstand earthquakes, Journal of Structural Engineering, 130(6) (2004) 969-977.
[18] H.E. Estekanchi, K. Arjmandi, Comparison of damage indexes in nonlinear time history analysis of steel moment frames, Asian Journal of Civil Engineering, 7(6) (2007) 629-646.
[19] ATC-13, Earthquake damage evaluation data for California, Applied technology council, 1985.
[20] A. Elenas, K. Meskouris, Correlation study between seismic acceleration parameters and damage indices of structures, Engineering Structures, 23(6) (2001) 698-704.
[21] FEMA-227, A Benifit-Cost Model for the Seismic Rehabilation of Building, Federal Emergency Management Agency, Building Seismic Safety Council Washington DC,  (1992).
[22] Y. Wen, Y. Kang, Minimum building life-cycle cost design criteria. II: Applications, Journal of Structural Engineering, 127(3) (2001) 338-346.
[23] N.D. Lagaros, Life-cycle cost analysis of design practices for RC framed structures, Bulletin of Earthquake Engineering, 5(3) (2007) 425-442.
[24] C.C. Mitropoulou, Advanced computational methods for seismic design and assessment of reinforced concrete structures, in, Athènes: PhD Dissertation, Institute of Structural Analysis and Antiseismic, (2011).
[25] ANSI/AISC 360-10, Specification for structural steel buildings, American Institute of Steel Construction, Chicago-Illinois,  (2010).
[26] ASCE7-10, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, (2010).
[27] A.S. Whittaker, M.C. Constantinou, P. Tsopelas, Y. Kim, S. Okamoto, Equivalent Lateral Force and Modal Analysis Procedures of the 2000 NEHRP Provisions for Buildings with Damping Systems,  (2003).
[28] T. Trombetti, S. Silvestri, On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems, Journal of sound and vibration, 292(1-2) (2006) 21-58.
[29] K.-S. Lee, J. Ricles, R. Sause, Performance-based seismic design of steel MRFs with elastomeric dampers, Journal of structural engineering, 135(5) (2009) 489-498.
[30] T.L. Karavasilis, R. Sause, J.M. Ricles, Seismic design and evaluation of steel moment‐resisting frames with compressed elastomer dampers, Earthquake Engineering & Structural Dynamics, 41(3) (2012) 411-429.
[31] R. Gobirahavan, A. Wijeyewickrema, An Alternative Design Method for the Seismic Retrofit of RC Moment Resisting Frame Buildings with Viscous Dampers, Journal of Earthquake Engineering, (2019) 1-31.