ویژگی‌های رفتاری و خصوصیات جذب انرژی صفحات برشی فولادی بالحاظ اثر جنس و نسبت لاغری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی مهندسی، دانشگاه گلستان، گرگان، ایران

چکیده

در تحقیق حاضر، تاثیر سه جنس متعارف از مصالح فولادی (فولاد ضدزنگ، فولاد نرمه ساختمانی و فولاد با تنش تسلیم پایین) و دامنه وسیعی از نسبت‌های لاغری در ویژگی‌های رفتار غیرخطی و قابلیت جذب انرژی صفحات فولادی تحت شرایط بارگذاری برشی با استفاده از روش المان محدود و بهره‌گیری از تحلیل‌های خطی/غیرخطی استاتیکی و سیکلی مورد مطالعه قرار گرفت. با توجه به نتایج تحلیل‌ها، صفحات فولادی مختلف با توجه به نسبت لاغری‌شان در پنج محدوده پیشنهادی بسیار لاغر، لاغر، متوسط، ضخیم و بسیار ضخیم طبقه‌بندی شدند. ویژگی‌های رفتار کلی، زمان نسبی وقوع کمانش یا تسلیم و روند توسعه تنش‌ها در طول بارگذاری برای هر یک از محدوده‌ها مورد بحث و مقایسه قرار گرفت. با تحلیل آماری نتایج، روابط تئوری اصلاح شده‌ای جهت تعیین مرزهای محدوده‌های پنج‌گانه لاغری برای هر یک از مصالح فولادی ارائه شد. همچنین، روابط جدیدی جهت تخمین بار کمانشی در محدوده غیرارتجاعی و خمیری ارائه گردید که قادر است تخمین دقیقتری از ظرفیت کمانشی صفحات نسبت به روابط تئوری موجود در آشتو ارائه دهد. به‌طورکلی با افزایش نسبت لاغری، تدریجا از قابلیت جذب انرژی صفحات (به‌دلیل وقوع کمانش و پدیده تنگ‌شدگی) و توسعه تسلیم در سطح ورق کاسته می‌شود. در محدوده صفحات بسیار ضخیم، قابلیت جذب انرژی صفحات صرفا تحت تاثیر تنش تسلیم مصالح است، درحالی‌که در محدوده‌های لاغر، متوسط و ضخیم، علاوه بر آن تحت تاثیر نسبت لاغری نیز است. قابلیت جذب انرژی صفحات فولادی مختلف در محدوده بسیار لاغر، بدون توجه به نسبت لاغری و تنش تسلیم، کم و بیش مشابه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Behavioral characteristics of steel shear panels with different materials and slenderness ratios

نویسندگان [English]

  • Zahra Aliarab
  • Seyed ali asghar Hosseinzadeh
M.Sc in Structural Engineering, Faculty of Engineering, Golestan University.
چکیده [English]

In the present study, the effect of material properties and slenderness ratios on the nonlinear behavior characteristics and energy dissipation behavior of steel plates under shear loading is studied using FEM. First, the steel shear plates with respect to their slenderness ratio and nonlinear behavior are qualitatively and quantitatively classified into very slender, slender, moderate, stockyو and very stocky. To quantitatively determine the slenderness classes for each steel material, modified theoretical relationships are presented separately using statistical analyses of the obtained results for various steel plates. Also, new relationships for assessment of inelastic and plastic buckling loads are proposed, that can estimate buckling loads for moderate and stocky plates more accurately compared to the available theoretical relationships in AASHTO. In general, with increasing slenderness ratio, the capability of steel plates for energy dissipation, due to the occurrence of buckling and the resulted pinching in the hysteresis loops, is gradually decreased. In the case of very stocky plates, the capability of plates for energy dissipation is only dependent on the material yield stress, while in the class of slender, moderate, and stocky plates, it is dependent on both the slenderness ratio and material yield stress. In the case of very slender steel plates, the capability of different steel plates for energy dissipation, disregarding the material yield stress and the plate slenderness ratio, seems to be similar, less or more, for various steel materials.

کلیدواژه‌ها [English]

  • Plate Behavior
  • Buckling
  • Yielding
  • Shear Loading
  • Finite Element
[1] A. Gheitasi, M.M. Alinia, Slenderness classification of unstiffened metal plates under shear loading, Thin-Walled Structures, 48(7) (2010) 508-518.
[2] M.M. Alinia, M. Dastfan, Cyclic behaviour, deformability and rigidity of stiffened steel shear panels, Journal of Constructional Steel Research, 63(4) (2007) 554–563.
[3] AASHTO, LRFD bridge design specifications, 8th ed: American Association of State Highway and Transportation Officials, Washington DC, 2018.
[4] M.M. Alinia, H.R. Habashi, A. Khorram, Nonlinearity in the postbuckling behavior of thin steel shear panels, Thin-Walled Structures, 47(4) (2009) 412-420.
[5] M.L. Sharp, J.W. Clark, Thin aluminum shear webs. Journal of Structural Division, 97(4) (1971) 1021–1038.
[6] D.M. Porter, K.C. Rockey, H.R. Evans, The collapse behavior of plate girders loaded in shear, Structural Engineer, 53(8) (1975) 313–325.
[7] C. Marsh, W. Ajam, H. Ha, Finite element analysis of postbuckled shear webs, Journal of Structural Engineering, 114(7) (1988) 1571–87.
[8] S.C. Lee, C.H. Yoo, Experimental study on ultimate shear strength of web panels. Journal of Structural Engineering, 125(8) (1999) 838–846.
[9] C.H. Yoo, S.C. Lee, Mechanics of web panel postbuckling behavior in shear. Journal of Structural Engineering, 132(10) (2006) 1580-1589.
[10] M.M. Alinia, M. Dastfan, Behavior of thin steel plate shear walls regarding frame members, Journal of Constructional Steel Research, 62(7) (2006) 730–738.
[11] M.M. Alinia, M. Shakiba, H.R. Habashi, Shear failure characteristics of steel plate girders, Thin-Walled Structures, 47(12) (2009) 1498-1506.
[12] M.M. Alinia, A. Gheitasi, M. Shakiba, Postbuckling and ultimate state of stresses in steel plate girders, Thin-Walled Structures, 49(4) (2011) 455-464.
[13] G.H. Bryan, On the stability of a plane plate under thrusts in its own plane with applications on the buckling of the sides of a ship, Proceedings of London Mathematical Society, 1891.
[14] S. Timoshenko, Theory of elastic stability, New York: McGraw Hill, 1936.
[15] M. Stein, J. Neff, Buckling stresses of simply supported rectangular flat plates in shear, NACA: Technical note no. 1222, 1947.
[16] R. Maquoi, M. Skaloud, Stability of plates and plated structures: general report. Journal of Constructional Steel Research, 55(1-3) (2000) 45–68.
[17] J. Rhodes, Some observations on the postbuckling behavior of thin plates and thin-walled members, Thin-Walled Structures, 41(2–3) (2003) 207-226.
[18] M.M. Alinia, S.A.A. Hosseinzadeh, H.R. Habashi, Influence of central cracks on buckling and post-buckling behaviour of shear panels, Thin-walled Structures, 45(4) (2007) 422–443.
[19] M.M. Alinia, S.A.A. Hosseinzadeh, H.R. Habashi, Numerical modelling for buckling analysis of cracked shear panels, Thin-Walled Structures, 45(12) (2007) 1058–1067.
[20] M.M. Alinia, S.A.A. Hosseinzadeh, H.R. Habashi, Buckling and post-buckling strength of shear panels degraded by near border cracks, Journal of Constructional Steel Research, 64(12) (2008) 1483–1494.
[21] M.A. Komur, Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression, Mechanics Research Communications, 38(2) (2011) 117–122.
[22] S.A.A. Hosseinzadeh, M. Tehranizadeh, Introduction of stiffened large rectangular openings in steel plate shear walls, Journal of Constructional Steel Research, 77 (2012) 180–192.
[23] E. Maiorana, C. Pellegrino, C. Modena, Non-linear analysis of perforated steel plates subjected to localized symmetrical load, Journal of Constructional Steel Research, 65(4) (2009) 959–964.
[24] W.H. Hoppman, M.D. Baltimore, Bending of orthogonally stiffened plates, Journal of Applied Mechanics, (1955) 267–71.
[25] N.J. Huffington, V.A. Blacksburg, Theorectical determination of rigidity properties of orthogonally stiffened plates, Journal Applied Mechanics, (1956) 15–20.
[26] H. Okada, K. Kitaura, Y. Fukumoto, Buckling strength of stiffened plates containing one longitudinal or transverse girder under compression, Bulletin of University of Osaka Prefecture, Series A, 20(2) (1971) 287–306.
[27] J. Kondo, Ultimate strength of longitudinally stiffened plate panels subjected to combined axial and lateral loading, Ph.D. thesis, Lehigh University, 1965.
[28] M.M. Alinia, R.S. Shirazi, On the design of stiffeners in steel plate shear walls, Journal of Constructional Steel Research, 65(10-11) (2009) 2069-2077.
[29] N.E. Shanmugam, Zhu. Dongqi, Y.S. Choo, M. Arockiaswamy, Experimental studies on stiffened plates under in-plane load and lateral pressure, Thin-Walled Structures, 80 (2014) 22–31.
[30] G. Gerard. Critical shear-stress of plates above the proportional limit. Journal of Applied Mechanics, 15(l) (1948) 7–12.
[31] E.Z. Stowell, A unified theory of plastic buckling of columns and plates. NACA Technical note 1556, 1948.
[32] T. Inoue, Analysis of plastic buckling of rectangular steel plates supported along their four edges, International Journal of Solids and Structures, 31(2) (1994) 219-230.
[33] J.W. Hutchinson, Plastic buckling, Advances in Applied Mechanics, 14 (1974) 67-144.
[34] T. Inoue, Analysis of plastic buckling of steel plates in shear based on the tresca yield criterion. International Journal of Solids and Structures, 33(26) (1996) 3903-3923.
[35] M.M. Alinia, A. Gheitasi, S. Erfani, Plastic shear buckling of unstiffened stocky plates, Journal of Constructional Steel Research, 65(8-9) (2009) 1631-1643.
[36] AASHTO, LRFD bridge design specifications, 3rd ed: American Association of State Highway and Transportation Officials, Washington DC, 2005.
[37] M.M. Alinia, Theory of plates and shells, Tehran, Ashian, 2010.
[38] ABAQUS, analysis user’s manual, version 6.16. Hibbitt, Karlsson, Sorenson, Inc., (HKS), 2016.
[39] M. Amani, M.M. Alinia, M. Fadakar, Imperfection sensitivity of slender/stocky metal plates. Thin-Walled Structures, 73 (2013) 207–215.
[40] S.A.A. Hosseinzadeh, Mohsen Tehranizadeh, The wall-frame interaction effect in steel plate shear wall systems, Journal of Constructional Steel Research, 98 (2014) 88–99.
[41] S.A.A. Hosseinzadeh, A. Kamraninejad, Effect of slenderness ratio on nonlinear-static/cyclic behavior characteristics of shear panels. IQBQ, 17(2) (2017) 93-104. (In Persian)
[42] W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, National Advisory Committee for Aeronautics, Washington DC, Technical note No. 902, 1943.
[43] S. Tahouni, Design of steel structures (ASD and LRFD), Tehran, Elam-o-adab, 2013.
[44] S.J. Chen, C.C. Chang, Experimental study of low yield point steel gusset plate connections. Thin-Walled Structures, 57 (2012) 62–69.
[45] ATC-24, Guidelines Of Cyclic Seismic Testing On Components For Steel Structures, Redwood City, California, U.S.A., Applied Technology Council, 1992.