تشخیص محل آسیب در پل‌های عرشه پیوسته با استفاده از روش آماری‌ تابع همبستگی متقابل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 عضو هیات علمی/ پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

3 گروه مهندسی عمران، گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

چکیده

تشخیص به‌هنگام آسیب پل‌ها یکی از دغدغه‌های همیشگی مهندسین بوده است. در این مقاله تلاش شده با ارائه‌ی روش‌ جدیدی براساس پاسخ‌های شتاب سازه و دامنه های آنی آنها، محل آسیب در عرشه‌ی پل‌ها تشخیص داده شود. برای این منظور، ابتدا براساس پاسخ‌های شتاب، مقادیر دامنه آنی پاسخ‌های سازه‌ی سالم و آسیب دیده از طریق تبدیل HHT محاسبه شده‌است. در ادامه، با معرفی شاخص جدید آسیب همبستگی متقابل (DICC) به تعیین محل‌های آسیب در حالت‌های کلی (Global) و موضعی (Local) پرداخته شده‌است. برای ارزیابی امکان‌پذیر بودن، و تخمین قابلیت اعتماد روش‌های پیشنهادی در تشخیص آسیب در دو سطح کلی و موضعی، از چند مدل تحلیلی پل‌های بتنی یک تا سه دهانه، و همچنین یک مدل آزمایشگاهی تیر دو سر ساده فلزی استفاده شده‌است. به منظور درنظرگرفتن اغتشاشات محیطی در هنگام برداشت داده‌ها و نشان دادن کارایی روش، مقدار نوفه مشخصی به پاسخ‌ها اضافه شده‌است. نتایج ارزیابی‌ها در مدل‌های تحلیلی و آزمایشگاهی نشان دادند که روش‌ پیشنهادی، می‌تواند برای سناریوهای مختلف آسیب، محل‌های آسیب را با دقت کافی تعیین نمایند. همچنین نتایج روش شاخص آسیب همبستگی متقابل DICC برای تمامی مدل‌های تحلیلی و آزمایشگاهی، بیانگر این نکته است که با ارزیابی سریع‌تر توانست است نتایج دقیق‌تری را ارائه دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Damage detection in continuous deck bridges using statistical cross-correlation function method

نویسندگان [English]

  • Mohammad Javad Khosraviani 1
  • omid bahar 2
  • Seyed Hooman Ghasemi 3
1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Faculty/International Institute of Earthquake Engineering & Seismology (IIEES)
3 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

The damage detection (DD) of the bridge has always been a major concern for engineers. This paper attempts to detect damage in the continuous deck bridges by providing a new method based on acceleration responses and their instantaneous amplitudes. The DD in this paper has two steps: firstly, determining the vicinity of damage in global DD. Secondly, determining the location of damage in local DD. Then by acceleration signals, the instantaneous amplitude values of healthy and damaged structural responses are extracted via HHT. Further, for the accurate evaluation of the proposed method, damage locations are determined by the cross-correlation damage index (DICC). To assess the feasibility and reliability of proposed methods, several analytical models of concrete bridges of one to three spans, as well as as experimental model of a simply supported steel beam, have been used. In order to consider noise pollution during data acquisition, a certain amount of noise is added to the response. The results in the analytical and experimental models showed that the proposed methods can determine the damage locations with appropriate accuracy for different damage scenarios and it could provide more exact results with a rapid estimation.
 

کلیدواژه‌ها [English]

  • damage detection
  • Structural health monitoring
  • Instantaneous amplitude
  • Cross-correlation
[1] H. Wenzel, Health monitoring of bridges, John Wiley & Sons, 2008.
[2] F. Magalhães, A. Cunha, E. Caetano, Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection, Mechanical Systems and Signal Processing, 28 (2012) 212-228.
[3] Y.L. Xu, Y. Xia, Structural health monitoring of long-span suspension bridges, CRC Press, 2011.
[4] A. Pierdicca, F. Clementi, D. Maracci, D. Isidori, S. Lenci, Damage detection in a precast structure subjected to an earthquake: A numerical approach, Engineering Structures, 127 (2016) 447-458.
[5] K.Y. Wong, Instrumentation and health monitoring of cable‐supported bridges, Structural control and health monitoring, 11(2) (2004) 91-124.
[6] M. Abe, Y. Fujino, Bridge Monitoring in Japan, Encyclopedia of Structural Health Monitoring, 5(2009), in, Wiley Online Library.
[7] H. M. Koh, H. S. Lee, S. Kim, and J. F Choo, Monitoring of Bridges in Korea, Encyclopedia of Structural Health Monitoring, 2009.
[8] N.A. Londono, Use of vibration data for structural health monitoring of bridges, Carleton University, 2006.
[9] A.E. Aktan, F.N. Catbas, K.A. Grimmelsman, M. Pervizpour, Development of a model health monitoring guide for major bridges, Rep. Dev. FHWA Res. Dev, (2002).
[10] B. Peeters, G. Couvreur, O. Razinkov, C. Kundig, H. Van der Auweraer, and G. De Roeck, Continuous Monitoring of the Oresund bridge: system and data analysis,. In IMAC-XXI: A Conference & Exposition on Structural Dynamics, 2003.
[11] M. Abe, J. Abot, G. Achs, J. Agius, A. E. Aktan, J. C. Aldrin, and I.  Bartoli, Encyclopedia of structural health monitoring, 2009.
[12] J. Ko, Y.Q. Ni, Technology developments in structural health monitoring of large-scale bridges, Engineering structures, 27(12) (2005) 1715-1725.
[13] Z. Yang, L. Wang, H. Wang, Y. Ding, X. Dang, Damage detection in composite structures using vibration response under stochastic excitation, Journal of Sound and Vibration, 325(4-5) (2009) 755-768.
[14] G.B. Whitham, Linear and nonlinear waves, John Wiley & Sons, 2011.
[15] D. Huston, Structural sensing, health monitoring, and performance evaluation, CRC Press, 2010.
[16] D.F. Mazurek, J.T. DeWolf, Experimental study of bridge monitoring technique, Journal of Structural Engineering, 116(9) (1990) 2532-2549.
[17] H. Lee, T. Ng, Dynamic response of a cracked beam subject to a moving load, Acta mechanica, 106(3-4) (1994) 221-230.
[18] M. Mahmoud, Effect of cracks on the dynamic response of a simple beam subject to a moving load, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 215(3) (2001) 207-215.
[19] Q. Zhang, Ł. Jankowski, Z. Duan, Simultaneous identification of moving masses and structural damage, Structural and Multidisciplinary Optimization, 42(6) (2010) 907-922.
[20] T. Rauert, B. Hoffmeister, R. Cantieni, M. Brehm, V. Zabel, Experimental modal analysis of a twin composite filler beam railway bridge for high-speed trains with continuous ballast, Proceedings of the IABMAS, 8 (2008).
[21] H.-M. Koh, D. Frangopol, Bridge Maintenance, Safety Management, Health Monitoring and Informatics-IABMAS'08: Proceedings of the Fourth International IABMAS Conference, Seoul, Korea, July 13-17, CRC Press, 2008.
[22] X. Zhu, S. Law, Wavelet-based crack identification of bridge beam from operational deflection time history, International Journal of Solids and Structures, 43(7-8) (2006) 2299-2317.
[23] A. Khorram, M. Rezaeian, and F. Bakhtiari-Nejad, Multiple cracks detection in a beam subjected to a moving load using wavelet analysis combined with factorial design, European Journal of Mechanics-A/Solids, 40 (2013) 97-113.
[24] N. Roveri, and A. Carcaterra, Damage detection in structures under traveling loads by Hilbert–Huang transform, Mechanical Systems and Signal Processing, 28 (2012) 128-144.
[25] D. Hester, and, A. González, A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle,  Mechanical Systems and Signal Processing, 28 (2012)145-166.
[26] A. González, and D. Hester, An investigation into the acceleration response of a damaged beam-type structure to a moving force, Journal of Sound and Vibration, 332(13) (2013) 3201-3217.
[27] S. Marchesiello, S. Bedaoui, L. Garibaldi, and P. Argoul, Time-dependent identification of a bridge-like structure with crossing loads, Mechanical Systems and Signal Processing, 23(6) (2009) 2019-2028.
[28] J. Li, H. Hao, Damage detection of shear connectors under moving loads with relative displacement measurements, Mechanical Systems and Signal Processing, 60 (2015) 124-150.
[29] J. Kwark, E. Choi, Y. Kim, B. Kim, S. Kim, Dynamic behavior of two-span continuous concrete bridges under moving high-speed train, Computers & structures, 82(4-5) (2004) 463-474.
[30] S. Marchesiello, A. Fasana, L. Garibaldi, B. Piombo, Dynamics of multi-span continuous straight bridges subject to multi-degrees of freedom moving vehicle excitation, Journal of Sound and Vibration, 224(3) (1999) 541-561.
[31] P. Chatterjee, T. Datta, C. Surana, Vibration of continuous bridges under moving vehicles, Journal of Sound and Vibration, 169(5) (1994) 619-632.
[32] X. Zhu, S. Law, Moving load identification on multi-span continuous bridges with elastic bearings, Mechanical Systems and Signal Processing, 20(7) (2006) 1759-1782.
[33] N. E. Huang, Introduction to the Hilbert–Huang transform and its related mathematical problems, In Hilbert–Huang transform and its applications (2014) 1-26.
[34] X. Zhu, S. Law, Moving load identification on multi-span continuous bridges with elastic bearings, Mechanical Systems and Signal Processing, 20(7) (2006) 1759-1782.
[35] J. N. Yang, Y. Lei, S. Pan, and N. Huang, System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes, Earthquake engineering & structural dynamics, 32(9) (2003) 1443-1467.
[36] A. Zarafshan, and F. Ansari, Damage Index Matrix: A Novel Damage Identification Method Using Hilbert-Huang Transformation, In Topics in Modal Analysis, 7 (2014) 439-450. Springer, New York, NY.
[37] B. Chen, S. L. Zhao, and P. Y. Li, Application of Hilbert-Huang transform in structural health monitoring: a state-of-the-art review, Mathematical Problems in Engineering, (2014).
[38] A. S. Nowak, and K. R. Collins, Reliability of structures, CRC Press, 2012.
[39] K. Shin, and J. Hammond, Fundamentals of signal processing for sound and vibration engineers, John Wiley & Sons, 2008.
[40] D. Zonta, A. Lanaro, and P. Zanon, A strain-flexibility-based approach to damage location, In Key Engineering Materials, 245 (2003) 87-96. Trans Tech Publications.
[41] S. Laflamme, L. Cao, E. Chatzi, and F. Ubertini, Damage detection and localization from dense network of strain sensors, Shock and Vibration, (2016).
[42] A.K. Upadhyay, R. Pandey, and K.K. Shukla, Nonlinear dynamic response of laminated composite plates subjected to pulse loading, Communications in Nonlinear Science and Numerical Simulation, 16(11) (2011) 4530-454.
[43] S. A. Ramu, and V. T. Johnson, Damage assessment of composite structures—A fuzzy logic integrated neural network approach, Computers & structures, 53(3) (1995) 491-502.
[44] A. H. Shahri, and A. K. Ghorbani-Tanha, Damage detection via closed-form sensitivity matrix of modal kinetic energy change ratio, Journal of Sound and Vibration, 401(2017) 268-281.