تعیین عمق نفوذ آلاینده در بستر رودخانه‌ها به منظور ارزیابی خاصیت خودپالائی رودخانه‌ها با استخراج یک رابطه تحلیلی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی، دانشگاه مراغه، مراغه، ایران.

چکیده

در این تحقیق به منظور بررسی خاصیت خودپالائی رودخانه ­ها سعی گردید تا عمق نفوذ آلاینده­ در بستر رودخانه ­ها تعیین گردد. بدین منظور مجموعه ­ای از داده ­های آزمایشگاهی برداشت شده و یک رابطه تحلیلی برای بررسی عمق و مکانیزم نفوذ آن استخراج شد. از حسگر­های هدایت الکتریکی و ردیاب کلرید سدیم به عنوان آلاینده غیرواکنشی در انجام آزمایش ­ها استفاده شد و برای استخراج رابطه تحلیلی، ابتدا یک مدل مفهومی بر اساس روش سلول­ های ترکیبی تهیه شده و با اعمال قانون بقای جرم در یک ستون قائم از بستر رودخانه، معادله دیفرانسیل حاکم تشکیل و سپس حل گردید. نتایج آزمایشگاهی در چهارچوب رابطه استخراج شده مورد بررسی قرار گرفت و مشاهده گردید که رابطه ارائه شده به خوبی قادر به باز­سازی منحنی­ های غلظت-زمان درون بستر می­ باشد. پارامتر­های زمانی مدل نیز استخراج شد و روند تغییرات آن با سایر پارامتر­های پژوهش مورد کاوش قرار گرفت و مشاهده شد که مجموع سه پارامتر زمانی مدل ( ) رابطه معکوس با ضریب پخشیدگی عمقی داشته و همچنین مقدار آن با افزایش عمق بستر افزایش می­ یابد. از حاصل­ضرب پارامتر منفذ و سرعت منفذی به عنوان شاخصی برای تعیین ضریب پخشیدگی عمقی استفاده شد. همچنین مقادیر مربوط به پارامتر­های سرعت، ضریب پخشیدگی عمقی و انتشارپذیری نیز در اعماق مختلف بستر محاسبه شده و مشاهده شد که مقدار تمامی آن­ها با افزایش عمق بستر کاهش می ­یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of the Penetration Depth of the Pollution in the River Bed for Evaluation of the Self-Purification Characteristics of the Rivers by Developing a Novel Theoretical Relationship

نویسندگان [English]

  • Jafar Chabokpour
  • Bagher Dini
Civil engineering department, university of Maragheh
چکیده [English]

In the current study, it was tried to determine the mechanism of the tracer penetration through the depth of the river beds to investigate the self-purification nature of the rivers. For this purpose, experimental tests were carried out, and an analytical solution was developed. The electrical conductivity sensors and sodium chloride tracer (as a conservative contaminant) were operated in the operations. Also, for the derivation of the analytical equation, a conceptual model was presented based on the hybrid cells in the series model. Then, by imposing the mass conservation to each cell of the depth column, the governing differential equation was obtained and solved. Next, the results were evaluated by the framework of the developed equation. Moreover, the applicability of the new model was checked and confirmed by the recreation of the breakthrough curves. The time parameters of the new model were extracted. Then, their variation by the other parameters was queried. It was observed that the sum of temporal parameters () have a reverse relationship with the vertical dispersion coefficient. On the other hand, its value has been raised by an increment of the bed depth. Furthermore, the product of the void scale and the pore velocity was used for the calculation of the vertical dispersion coefficient. Also, the magnitudes of the pore velocity and dispersivity were commuted. The results revealed that by the increase of the bed depth, the mentioned parameters were decreased.

کلیدواژه‌ها [English]

  • Self-purification
  • Penetration depth of the pollution
  • River bed
  • Analytical model
[1] H. Nagaoka and S. Ohgaki, Mass transfer mechanism in a porous riverbed, Water resources research, 24, (1990) 417–425.
[2] Y. Shimizu, T. Tsujimoto and H. Nakagawa, Experiment and macroscopic modelling of flow in highly permeable porous medium under free-surface flow, Hydroscience and hydraulic engineering, 8(1990), 69–78.
[3] D. C. McAvoy, P. Masscheleyn, C. Peng, S. W. Morrall, A. B. Casilla, J. M. U. Lim, and E. G. Gregorio, Risk assessment approach for untreated wastewater using the QUAL2E water quality model, Chemosphere, 52(2003), 55–66.
[4] R. L. Runkel, One dimensional transport with inflow and outflow (OTIS): A solute transport model for streams and rivers, U.S. Geological Survey Rep., 98-4018, (1998), 73 pp.
[5] J. Chabokpour, A. Samadi, and M. Merikhi, Application of method of temporal moments to the contaminant exit breakthrough curves from rockfill media. Iran Journal of Soil and Water research, 49(3) (2018):629-640. (In Persian)
[6] F. Boano, J. W. Harvey, A. Marion, A. I. Packman, R. Revelli, L. Ridolfi, and A. Worman, Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications, Reviews of Geophysics, 52, (2014) 603–679.
[7] J. S. Fries, Predicting interfacial diffusion coefficients for fluxes across the sediment-water interface, Journal of hydraulic engineering, 133 (2007), 267–272.
[8] A. Marion,  M. Bellinello, I. Guymer, and A. I. Packman, Effect of bed form geometry on penetration of nonreactive solute into a streambed, Water Resources Research, (2002), 38(10), 1209.
[9] A. I. Packman, and M. Salehin, Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange, Hydrobiologia, (2003), 494, 291–297.
[10] A. I. Packman, M. Salehin and M. Zaramella, Hyporheic exchange with gravel beds: basic hydrodynamic interactions and induced advective flows, Journal of hydraulic, (2004), 130, 647–656.
[11] J., Ren, and A. I. Packman, Stream-subsurface exchange of zinc in the presence of silica and kaolinite colloids, Environmental Science & Technology, 38 (2004), 6571–6581.
[12] K. J. Rehg, A. I. Packman, and J. Ren, Effects of suspended sediment characteristics and bed sediment transport on streambed clogging, Hydrological Processes, 19 (2005), 413–427.
[13] D. Tonina, and J. M. Buffington, Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modelling, Water Resources Research, 43(2007), W01421.
[14] E. T. Hester, K. I. Young, and M. A. Widdowson, Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions, Water Resources Research, 49(2013), 5221–5237.
[15] I. D. Chandler, I. Guymer, J. M. Pearson,and R. van Egmond, Vertical variation of mixing within porous sediment beds below turbulent flows, Water Resources Research, 52(2016), 3493–3509.
[16] F. Boano, C. Camporeale, R. Revelli, and L. Ridolfi, Sinuosity-driven hyporheic exchange in meandering rivers, Geophysical Research Letters, 33(2006) (18), L18, 406.
[17] D. Tonina, and J. M. Buffington, Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling, Water Resources Research, 43(1) (2007), W01, 421.
[18] A. Marion, A. I. Packman, M. Zaramella, and A. Bottacin-Busolin, Hyporheic flows in stratified beds, Water Resources Research, 44(9) (2008), W09,433.
[19] A. Bottacin-Busolin, and A. Marion, Combined role of advective pumping and mechanical dispersion on time scales of bed form–induced hyporheic exchange, Water Resources Research, 46(8) (2010), W08,518.
[20] A. Marzadri, D. Tonina, A. Bellin, G. Vignoli, and M. Tubino, Semianalytical analysis of hyporheic flow induced by alternate bars, Water Resources Research, 46(7) (2010), W07,531.
[21] B. A. Kiel, and B. M. Cardenas, Lateral hyporheic exchange throughout the Mississippi River network, Nature Geoscience, 7(6) (2014), 413–417.
[22] X. Chen, M. B. Cardenas, and L. Chen, Hyporheic Exchange Driven by Three-Dimensional Sandy Bed Forms: Sensitivity to and Prediction from Bed Form Geometry, Water Resources Research, 54(6) (2018), 4131–4149.
[23] J. J. Voermans,  M. Ghisalberti, and G. N. Ivey, The variation of flow and turbulence across the sediment–water interface, Journal of Fluid Mechanics, 824 (2017), 413–437.
[24] Roche, K. R., A. Li, D. Bolster, G. J. Wagner, and A. I. Packman (2019), Effects of turbulent hyporheic mixing on reach-scale transport, Water Resources Research, 0(ja), doi:10.1029/2018WR023421.
[25] T. Sherman, K. R. Roche, D. H. Richter, A. I. Packman, and D. Bolster, A Dual Domain stochastic lagrangian model for predicting transport in open channels with hyporheic exchange, Advances Water Recourses, 125(2019), 57–67.
[26] A. Bottacin-Busolin, Non-Fickian dispersion in open-channel flow over a porous bed, Water Resources Research, 53(8) (2017), 7426–7456.
[27] J. Chabokpour, Application of Hybrid Cells in Series Model in the Pollution Transport through Layered Material. Pollution. 5(3) (2019):473-486.
[28] N. C. Ghosh, Study of solute transport in a river. PhD thesis, I I T. Roorkee, India, (2001).
[29] N. C. Ghosh, G. C. Mishra and C. S. P. Ojha, a hybrid-cells in-series model for solute transport in a river. J Environmental Engineering, 13010 (2004), 1198–1209.
[30] N.C. Ghosh, G.C. Mishra, M. Kumarasamy, Hybrid-cells-in-series model for solute transport in streams and relation of its parameters with bulk flow characteristics, Journal of  Hydraulic Engineering, 134(2008):497–502.