[1] R. Paolini, A. Zani, M. MeshkinKiya, V.L. Castaldo, A.L. Pisello, F. Antretter, T. Poli, F. Cotana, The hygrothermal performance of residential buildings at urban and rural sites: Sensible and latent energy loads and indoor environmental conditions, Energy and Buildings, 152 (2017) 792-803.
[2] M. Pakand, V. TouFig. h, A multi-criteria study on rammed earth for low carbon buildings using a novel ANP-GA approach, Energy and Buildings, 150 (2017) 466-476.
[3] M. Saidi, A.S. Cherif, B. Zeghmati, E. Sediki, Stabilization effects on the thermal conductivity and sorption behavior of earth bricks, Construction and Building Materials, 167 (2018) 566-577.
[4] J. I. Knarud and S. Geving, Comparative study of hygrothermal simulations of a masonry wall FILLIN, Energy Procedia,132 (2017) 771–776.
[5] L.M. Al-Hadhrami, A. Ahmad, Assessment of thermal performance of different types of masonry bricks used in Saudi Arabia, Applied Thermal Engineering, 29(5-6) (2009) 1123-1130.
[6] N. Aste, A. Angelotti, M. Buzzetti, The influence of the external walls thermal inertia on the energy performance of well insulated buildings, Energy and Buildings, 41(11) (2009) 1181-1187.
[7] U. Berardi, L. Tronchin, M. Manfren, B. Nastasi, On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector, Energies, 11(4) (2018).
[8] A. Abdou, I. Budaiwi, The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content, Construction and Building materials, 43 (2013) 533-544.
[9] A. Kyriakidis, A. Michael, R. Illampas, D.C. Charmpis, I. Ioannou, Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe, Energy, 161 (2018) 1016-1027.
[10] L. Soudani, M. Woloszyn, A. Fabbri, J.-C. Morel, A.-C. Grillet, Energy evaluation of rammed earth walls using long term in-situ measurements, Solar Energy, 141 (2017) 70-80.
[11] A. Rabl, C.E. Nielsen, Solar ponds for space heating, Solar Energy, 17(1) (1975) 1-12.
[12] Y. Liu, C. Ma, D. Wang, Y. Wang, J. Liu, Nonlinear Effect of Moisture Content on Effective Thermal Conductivity of Building Materials with Different Pore Size Distributions, International Journal of Thermophysics, 37(6) (2016).
[13] A.W. Bruno, C. Perlot, J. Mendes, D. Gallipoli, A microstructural insight into the hygro-mechanical behaviour of a stabilised hypercompacted earth, Materials and Structures, 51(1) (2018).
[14] S. Serrano, L. Rincón, B. González, A. Navarro, M. Bosch, L.F. Cabeza, Rammed earth walls in Mediterranean climate: material characterization and thermal behaviour, International Journal of Low-Carbon Technologies, (2016).
[15] C. Method, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using, 3 (2003) 1–10.
[16] International Standard ISO13786, Thermal performance of building components- Dynamic thermal characteristics- Calculation methods, 2 (2017).
[17] F. Kreith and W. Black, Basic_Heat_Transfer, Solar Energy Research Institute, (1980).
[18] M. Cabinets, M. Rooms, B. Statements, and D. Mass, Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ) 1, (2008) 1–9.