[1] V.M. Malhotra, Making concrete ‘greener’ with fly ash, ACI Concrete International, 21 (1999) 61-66.
[2] L.N. Assi, E. Eddie Deaver, P. Ziehl, Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete, Construction and Building Materials, 167 (2018) 372-380.
[3] V.M. Malhotra, Reducing CO2 Emissions, ACI Concrete International, 28 (2006) 42-45.
[4] I. Phummiphan, S. Horpibulsuk, R. Rachan, A. Arulrajah, S.-L. Shen, P. Chindaprasirt, High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material, Journal of Hazardous Materials, 341 (2018) 257-267.
[5] R. McCaffrey, Climate Change and the Cement Industry, Global Cement and Lime Magazine (Environmental Special Issue), (2002) 15-19.
[6] S. Andrejkovičová, A. Sudagar, J. Rocha, C. Patinha, W. Hajjaji, E.F. da Silva, A. Velosa, F. Rocha, The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers, Applied Clay Science, 126 (2016) 141-152.
[7] C. Chen, G. Habert, Y. Bouzidi, A. Jullien, Environmental impact of cement production: detail of the different processes and cement plant variability evaluation, Journal of Cleaner Production, 18 (2010) 478–485.
[8] C. Meyer, The greening of the concrete industry, Cement & Concrete Composites, 31(8) (2009) 601-605.
[9] I. Bashir, K. Kapoor, H. Sood, An Experimental Investigation on the Mechanical Properties of Geopolymer Concrete, International Journal of Latest Research in Science and Technology, 6(3) (2017) 33-36.
[10] E. Ekinci, İ. Türkmen, F. Kantarci, M.B. Karakoç, The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios, Construction and Building Materials, 201 (2019) 257-267.
[11] M.B. Karakoç, İ. Türkmen, M.M. Maras, F. Kantarci, R. Demirbog˘a, M. Ug˘ur Toprak, Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar, Construction and Building Materials, 72(Supplement C) (2014) 283–292.
[12] S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste, Construction and Building Materials, 157(Supplement C) (2017) 534–545.
[13] A. Karthik, K. Sudalaimani, C.T. Vijaya Kumar, Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete, Construction and Building Materials, 157(Supplement C) (2017) 338–349.
[14] Bagheri, A. Nazari, Compressive strength of high strength class C flyash-based geopolymers with reactive granulated blast furnace slagaggregates designed by Taguchi method, Materials & Design, 54 (2014) 483–490.
[15] T.W. Cheng, J.P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16(3) (2003) 205-210.
[16] K. Sakkas, D. Panias, P.P. Nomikos, A.I. Sofianos, Potassium based geopolymer for passive fire protection of concrete tunnels linings, Tunnelling and Underground Space Technology, 43 (2014) 148-156.
[17] P.K. Sarker, S. Kelly, Z. Yao, Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Materials & Design, 63 (2014) 584-592.
[18] W.K.W. Lee, J.S.J. van Deventer, The effects of inorganic salt contamination on the strength and durability of geopolymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2) (2002) 115-126.
[19] A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez, M.W. Grutzeck, Chemical stability of cementitious materials based on metakaolin, Cement and Concrete Research, 29(7) (1999) 997-1004.
[20] M. Zhang, H. Guo, T. El-Korchi, G. Zhang, M. Tao, Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Construction and Building Materials, 47 (2013) 1468-1478.
[21] S.E. Wallah, Creep Behaviour of Fly Ash-Based Geopolymer Concrete, Civil Engineering Dimension, 12(2) (2010) 73-78.
[22] P. DeSilva, K. Sagoe-Crenstil, V. Sirivivatnanon, Kinetics of geopolymerization: role of Al2O3 and SiO2, Cement and Concrete Research, 37(4) (2007) 512-518.
[23] K. Gao, K.-L. Lin, D. Wang, C.-L. Hwang, B.L. Anh Tuan, H.-S. Shiu, T.-W. Cheng, Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers, Construction and Building Materials, 48 (2013) 441-447.
[24] G. Görhan, G. Kürklü, The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures, Composites Part B: Engineering, 58 (2014) 371-377.
[25] D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, On the Development of Fly Ash-Based Geopolymer Concrete, ACI Materials Journal, 101(6) (2004) 467-472.
[26] J. Davidovits, Geopolymer Chemistry and Properties, in: Geopolymer '88, France, 1988, pp. 25-48.
[27] J. Davidovits, Soft Mineralurgy and Geopolymers, in: Geopolymer ’88, France, 1988, pp. 19-23.
[28] H. Xu, J.S.J. van Deventer, The Geopolymerisation of Alumino-Silicate Minerals, International Journal of Mineral Processing 59(3) (2000) 247-266.
[29] A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer, Construction and Building Materials, 47 (2013) 29-55.
[30] A. Sharma, J. Ahmad, Experimental study of factors influencing compressive strength of geopolemer concrete, International Research Journal of Engineering and Technology, 4(5) (2017) 1306-1313.
[31] Y.J. Patel, N. Shah, Study on Workability and Hardened Properties of Self Compacted Geopolymer Concrete Cured at Ambient Temperature, Indian Journal of Science and Technology, 11(1) (2018) 1-12.
[32] D. Hardjito, B.V. Rangan, Development and properties of low-calcium fly ash-based geopolymer concrete, Research Report, Faculty of Engineering Curtin University of Technology, Perth, Australia, 2005.
[33] H.T.B.M. Petrus, J. Hulu, G.S.P. Dalton, E. Malinda, R.A. Prakosa, Effect of Bentonite Addition on Geopolymer Concrete from Geothermal Silica, Materials Science Forum, 841 (2016) 7-15.
[34] J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal, 89(1-3) (2002) 63-73.
[35] Satpute Manesh, R. Wakchaure Madhukar, V. Patankar Subhash, Effect of duration and temperature of curing on compressive strength of geopolymer concrete, International Journal of Engineering and Innovative Technology, 1 (2012) 372-391.
[36] M.N.S. Ahmed, M. Nuruddin, S. Demie, N. Shafiq, Effect of curing conditions on strength of fly ash based self-compacting geopolymer concrete, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 5(8) (2011) 8-22.
[37] ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, 2015.
[38] ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.
[39] ASTM C136 / C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014.
[40] ASTM D2419-14, Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate, ASTM International, West Conshohocken, PA, 2014.
[41] British Standards Institution, Testing Concrete: Method for Determination of the Compressive Strength of Concrete Cubes, BS1881: Part116: 1983, London.
[42] P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, The role of inorganic polymer technology in the development of ‘green concrete’, Cement and Concrete Research, 37(12) (2007) 1590-1597.
[43] J. Davidovits, Chemistry of Geopolymeric Systems, Terminology In: Proceedings of 99 International Conference, eds. Joseph Davidovits, R. Davidovits & C. James, France, (1999).
[44] K. Komnitsas, D. Zaharaki, V. Perdikatsis, Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers, Journal of Hazardous Materials, 161(2) (2009) 760-768.
[45] Panagiotopoulou, G. Kakali, S. Tsivilis, T. Perraki, M. Perraki, Synthesis and Characterization of Slag Based Geopolymers, Materials Science Forum, 636-637 (2010) 155-160.
[46] F.A. Memon, M.F. Nuruddin, N. Shafiq, Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete, International Journal of Minerals, Metallurgy, and Materials, 20(2) (2013) 205-213.
[47] S.H. Sanni, R. Khadiranaikar, Performance of alkaline solutions on grades of geopolymer concrete, International Journal of Research in Engineering and Technology, 2(11) (2013) 366-371.
[48] ] M.T. Junaid, O. Kayali, A. Khennane, J. Black, A mix design procedure for low calcium alkali activated fly ash-based concretes, Construction and Building Materials, 79 (2015) 301-310.
[49] E.I. Diaz-Loya, E.N. Allouche, S. Vaidya, Mechanical properties of fly-ash-based geopolymer concrete, ACI Materials Journal, 108(3) (2011) 300.
[50] N. Lloyd, V. Rangan, Geopolymer concrete with fly ash, in: Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, UWM Center for By-Products Utilization, 2010, pp. 1493-1504.
[51] N. Muhammad, S. Baharom, N.A.M. Ghazali, N.A. Alias, Effect of Heat Curing Temperatures on Fly Ash-Based Geopolymer Concrete, International Journal of Engineering & Technology, 8(1.2) (2019) 15-19.