طراحی بهینه‌ی آبشکن‌ها با لحاظ توأم معیارهای هیدرولیکی، فنی و اقتصادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران،آب و محیط زیست، شهیدبهشتی، تهران، ایران

2 دانشکده شهید عباسپور، دانشگاه شهید بهشتی

چکیده

آبشکن یکی از سازه­ها­ی حفاظتی برای ساماندهی رودخانه است که اهمیت بسیاری داشته و به‌منظور جلوگیری از فرسایشدر رودخانه احداث می­­شوند. به‌منظور ارائه طرحی که از لحاظ فنی و اقتصادی بهینه باشد، از مدل بهینه­سازی چند­هدفه استفاده شده‌است. در تحقیق حاضر طراحی هیدرولیکی و همچنین طراحی سازه­ای آبشکن در قالب یک مساله‌ی بهینه‌سازی فرمول‌بندی شده که برای حل آن از الگوریتم NSGA-II استفاده شده‌است. توابع هدف مدل بهینه‌سازی شامل حداقل‌سازی هزینه‌ها و حداکثر‌سازی انتقال بار رسوب به صورت هم‌زمان در نظر گرفته شده‌است. هدف اول برای مقرون به‌صرفه کردن طرح و تابع هدف دوم بر اساس تعاریف پایداری رودخانه به‌منظور پایدار ماندن رودخانه لحاظ شده‌است. واسنجی مدل با استفاده از اطلاعات رودخانه زنجان­رود معادله بار بستر و  آبشستگی انجام و مدل نسبت به تغییر پارامترهای ورودی دبی جریان و شیب طولی حساسیت سنجی و تاثیر آن روی پارامترهای خروجی بررسی شده و صحت­سنجی مدل با اطلاعات سازه­ای مطالعه موردی انجام شد. جبهه جواب مساله بهینه‌سازی بر اساس توابع هزینه و بار بستر استخراج شد. با مقایسه پنج طرح بهینه (5 سناریوی مختلف طراحی) از جبهه جواب با طرح موجود و نقطه ایده­آل نتایج نشان می­دهد طرحی که به عنوان طرح منتخب از بین 5 سناریو برگزیده شده نزدیکترین نتیجه را با نقطه ایده­آل دارد. طرح منتخب پیشنهاد می­دهد که طول آبشکن و فاصله بین آبشکن­ها نسبت به طرح موجود بیشتر و شیب یال­های جانبی آبشکن کم شود همچنین ریشه آبشکن مقدار کم­تری از ریشه در طرح موجود دارد. طرح منتخب به اندازه‌ی 95%/64 هزینه‌ی کمتر و %96/39 بار رسوب انتقالی را نسبت به طرح موجود افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal design of groynes with hydraulic, technical and economic criteria

نویسندگان [English]

  • nasrin abouzari 1
  • Mohammad Reza Majdzadeh Tabatabai 2
  • Jafar Yazdi 2
1 Faculty of Civil Engineering, Water and Environment, Shahid Beheshti, Tehran, Iran
2 Civil Engineering
چکیده [English]

Groynes are one of the most important protective structures for river regulation and are constructed to prevent erosion in the river. A multi-objective optimization model has been used to provide a technically and economically optimal design. In the present study, the hydraulic design as well as the design of the groyne structures were formulated in the form of an optimization problem using the NSGA-II algorithm. The objective functions of the optimization model include simultaneously minimizing costs and maximizing sediment load transport. The first objective function is to economize the design and the second objective function is based on the definitions of river stability in order to keep the riverstable.  Model calibration was performed using Zanjanrood River information of bed load and scour equation. The model was investigated for sensitivity to change inlet flow parameters and longitudinal slope and its effect on output parameters and model validation with case study structural information. The optimization problem pareto front was derived based on cost and bed load functions. By comparing the five optimal  possible designs (5 different design scenarios) from the pareto front with the existing design and the ideal design, the results show that the design selected among five scenarios has the closest approximation to Utopia point. The selected design suggests that the length of the groynes and the distance between them are reduced compared to the existing design and the slope of the side of the groynes is also lower than the groyne's root. The selected design has 64.95%  less cost and  39.96% more sediment transport than those of the current condition.

کلیدواژه‌ها [English]

  • Groyne
  • River training
  • optimization
  • NSGA-II
  • Cost
1.         Supervision, V.P.o.S.P.a., Deputy Director of Strategic Planning and Control, "Guide for Designing and Maintenance of River groynes". 2009.
2.         Rosgen, D.L. A hierarchical river stability/watershed-based sediment assessment methodology. in Proceedings of 7th Federal Interagency Sedimentation Conference, March, Reno, Nevada. 2001.
3.         Carriaga, C.C. and L.W. Mays. Optimization approach to stable channel system
design. in Proceedings of the 2001 International
Symposium on Environmental Hydraulics. 2001.
4.         Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197.
5.         Li, H. and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation, 2009. 13(2): p. 284.
6.         Karimi, M. and M. Mohammadzadeh, Modeling of Urban Land Use Allocation Using Reference-Point-Nondominated Sorting Genetic Algorithm II. Journal of Geomatics Science and Technology, 2015. 4(4): p. 47-66.
7.         Jain, V., et al., Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique. Energy Conversion and Management, 2016. 113: p. 230-242.
8.         Wang, Q., et al., Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems. Water, 2019. 11(5): p. 971.
9.         Liu, J. and X. Chen, An Improved NSGA-II Algorithm Based on Crowding Distance Elimination Strategy. International Journal of Computational Intelligence Systems, 2019. 12(2): p. 513-518.
10.       استادی, ف., م. مجدزاده طباطبایی, and س. علی محمدی, مدل بهینه‌سازی طراحی ابعاد آبشکن های رودخانه ای و نقش آن در پایدارسازی مورفولوژیکی رودخانه. هیدرولیک, 1393. 9(4): p. -.
11.       Kalita, H.M., A.K. Sarma, and R.K. Bhattacharjya, Evaluation of optimal river training work using GA based linked simulation-optimization approach. Water resources management, 2014. 28(8): p. 2077-2092.
12.       Basser, H., et al., Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Applied Soft Computing, 2015. 30: p. 642-649.
13.       Alauddin, M. and T. Tsujimoto, Optimum design of groynes for stabilization of lowland rivers. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 2011. 67(4): p. I_145-I_150.
14.       Alauddin, M. and T. Tsujimoto, Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments. International Journal of Sediment Research, 2012. 27(2): p. 158-167.
15.       طاهرشمسی, ا. and ف. ایمان شعار, تعیین معادلات رژیم رودخانه بر اساس معادله توان واحد جریان. نشریه مهندسی عمران و نقشه برداری, 2010. 44(1): p. -.
16.       نیر, ش., et al., مطالعه آزمایشگاهی تأثیر شکلهای مختلف آبشکن بر تغییرات زمانی آبشستگی پیرامون آنها. تحقیقات مهندسی سازه های آبیاری و زهکشی, 2018. 19(72): p. 33-50.
17.       CHOW, V.T., OPEN-CHANNEL HYDRAULICS. 1959.
18.       Julien, P.Y. second ed. 1995-2010, united kingdom by cambridge university press, UK.
19.       Rijn, L.C., Mathematical modelling of morphological processes in the case of suspended sediment transport. 1987: Waterloopkundig Laboratorium.
20.       Nazari, B., Forecasting the morphological response of the river to dam construction using extreme theories, in University of Water and Power Industry. 2011.
21.       Huang, H.Q. and G.C. Nanson, Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2000. 25(1): p. 1-16.
22.       Kruijt , M., Resistance of submerged groynes. 2013, Delft University of Thechnology.
23.       Engineers, I.S.C., Control and Evaluation of Zanjanrood River Conservation Plan. 2004.
24.       Blazejewski, R., K.W. Pilarczyk, and B. Przedwojski, River Training Techniques: Fundamentals, Design and Applications. 1995: Taylor & Francis.
25.       adineh, s., Optimal design of slope control structures for river stability (case study: Garmabdr river). 2015.
26.       Senthilkumar, C., G. Ganesan, and R. Karthikeyan, Optimization of ECM process parameters using NSGA-II. Journal of Minerals and Materials Characterization and Engineering, 2012. 11(10): p. 931.
27.       Yazdi, J., D. Yoo, and J.H. Kim, Comparative study of multi-objective evolutionary algorithms for hydraulic rehabilitation of urban drainage networks. Urban Water Journal, 2017. 14(5): p. 483-492.
28.       Carroll, J.D., E. Kumbasar, and A.K. Romney, An equivalence relation between correspondence analysis and classical metric multidimensional scaling for the recovery of Euclidean distances. British Journal of Mathematical and Statistical Psychology, 1997. 50(1): p. 81-92.
29.       Leon, C., P.Y. Julien, and D.C. Baird, Case study: equivalent widths of the middle Rio Grande, New Mexico. Journal of Hydraulic Engineering, 2009. 135(4): p. 306-315.