1. Supervision, V.P.o.S.P.a., Deputy Director of Strategic Planning and Control, "Guide for Designing and Maintenance of River groynes". 2009.
2. Rosgen, D.L. A hierarchical river stability/watershed-based sediment assessment methodology. in Proceedings of 7th Federal Interagency Sedimentation Conference, March, Reno, Nevada. 2001.
3. Carriaga, C.C. and L.W. Mays. Optimization approach to stable channel system
design. in Proceedings of the 2001 International
Symposium on Environmental Hydraulics. 2001.
4. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197.
5. Li, H. and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation, 2009. 13(2): p. 284.
6. Karimi, M. and M. Mohammadzadeh, Modeling of Urban Land Use Allocation Using Reference-Point-Nondominated Sorting Genetic Algorithm II. Journal of Geomatics Science and Technology, 2015. 4(4): p. 47-66.
7. Jain, V., et al., Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique. Energy Conversion and Management, 2016. 113: p. 230-242.
8. Wang, Q., et al., Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems. Water, 2019. 11(5): p. 971.
9. Liu, J. and X. Chen, An Improved NSGA-II Algorithm Based on Crowding Distance Elimination Strategy. International Journal of Computational Intelligence Systems, 2019. 12(2): p. 513-518.
10. استادی, ف., م. مجدزاده طباطبایی, and س. علی محمدی, مدل بهینهسازی طراحی ابعاد آبشکن های رودخانه ای و نقش آن در پایدارسازی مورفولوژیکی رودخانه. هیدرولیک, 1393. 9(4): p. -.
11. Kalita, H.M., A.K. Sarma, and R.K. Bhattacharjya, Evaluation of optimal river training work using GA based linked simulation-optimization approach. Water resources management, 2014. 28(8): p. 2077-2092.
12. Basser, H., et al., Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Applied Soft Computing, 2015. 30: p. 642-649.
13. Alauddin, M. and T. Tsujimoto, Optimum design of groynes for stabilization of lowland rivers. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 2011. 67(4): p. I_145-I_150.
14. Alauddin, M. and T. Tsujimoto, Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments. International Journal of Sediment Research, 2012. 27(2): p. 158-167.
15. طاهرشمسی, ا. and ف. ایمان شعار, تعیین معادلات رژیم رودخانه بر اساس معادله توان واحد جریان. نشریه مهندسی عمران و نقشه برداری, 2010. 44(1): p. -.
16. نیر, ش., et al., مطالعه آزمایشگاهی تأثیر شکلهای مختلف آبشکن بر تغییرات زمانی آبشستگی پیرامون آنها. تحقیقات مهندسی سازه های آبیاری و زهکشی, 2018. 19(72): p. 33-50.
17. CHOW, V.T., OPEN-CHANNEL HYDRAULICS. 1959.
18. Julien, P.Y. second ed. 1995-2010, united kingdom by cambridge university press, UK.
19. Rijn, L.C., Mathematical modelling of morphological processes in the case of suspended sediment transport. 1987: Waterloopkundig Laboratorium.
20. Nazari, B., Forecasting the morphological response of the river to dam construction using extreme theories, in University of Water and Power Industry. 2011.
21. Huang, H.Q. and G.C. Nanson, Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2000. 25(1): p. 1-16.
22. Kruijt , M., Resistance of submerged groynes. 2013, Delft University of Thechnology.
23. Engineers, I.S.C., Control and Evaluation of Zanjanrood River Conservation Plan. 2004.
24. Blazejewski, R., K.W. Pilarczyk, and B. Przedwojski, River Training Techniques: Fundamentals, Design and Applications. 1995: Taylor & Francis.
25. adineh, s., Optimal design of slope control structures for river stability (case study: Garmabdr river). 2015.
26. Senthilkumar, C., G. Ganesan, and R. Karthikeyan, Optimization of ECM process parameters using NSGA-II. Journal of Minerals and Materials Characterization and Engineering, 2012. 11(10): p. 931.
27. Yazdi, J., D. Yoo, and J.H. Kim, Comparative study of multi-objective evolutionary algorithms for hydraulic rehabilitation of urban drainage networks. Urban Water Journal, 2017. 14(5): p. 483-492.
28. Carroll, J.D., E. Kumbasar, and A.K. Romney, An equivalence relation between correspondence analysis and classical metric multidimensional scaling for the recovery of Euclidean distances. British Journal of Mathematical and Statistical Psychology, 1997. 50(1): p. 81-92.
29. Leon, C., P.Y. Julien, and D.C. Baird, Case study: equivalent widths of the middle Rio Grande, New Mexico. Journal of Hydraulic Engineering, 2009. 135(4): p. 306-315.