بررسی روند تغییرات زمانی- مکانی دما و بارش در حوضه آبریز طشک-بختگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست-منابع آب، دانشکده محیط زیست، پردیس دانشکده های فنی، دانشگاه تهران.

2 سرپرست گروه آب های سطحی، موسسه تحقیقات آب

3 استاد، گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

4 مدیر پژوهشکده مطالعات و تحقیقات مناب آب،​موسسه تحقیقات آب

چکیده

یکی از چالش‌های جدی در عصر حاضر تغییر اقلیم و تأثیر آن بر منابع آب در دسترس است. در این راستا بررسی تغییرات زمانی و مکانی بارندگی و دما، به عنوان پارامترهای تأثیرگذار بر وضعیت منابع آب، می‌تواند در ارزیابی شرایط هیدروکلیماتولوژی حوضه و اتخاذ سیاست‌های مدیریتی مناسب باشد. در این تحقیق ابتدا روند زمانی بارش و دما سالانه حوضه آبریز طشک-بختگان در یک دوره آماری 30 ساله (2010-1981 )با استفاده از روش‌های آماری غیرپارامتریک من- کندال، اسپیرمن، شیب سن و پتی بررسی شد. سپس برای درک تفاوت مکانی این پارامترها در سطح حوضه از تکنیک‌های درونیابی عکس فاصله (IDW ،)چندجمله‌ای محلی (LPI ،)چندجمله‌ای جهانی (GPI )و روش تابع و روش تابع شعاعی(RBF )مختلف استفاده شد. نتایج نشان داد بارندگی طی دوره 1981-2010 به میزان 14/3درصد کاهش و دما به میزان3/5 درصد افزایش داشته است که روند تغییرات برای بارش و دما به ترتیب در سال 2004 و 1985 اتفاق افتاده است. اما روند کاهش بارندگی در منطقه برخلاف افزایش دما معنی‌دار نیست. با این وجود، استفاده از روش کریجینگ برای بررسی تغییرات مکانی بارندگی و روش تابع شعاعی برای بررسی تغییرات مکانی دما در حوضه مورد مطالعه بدلیل کمترین خطای گزارش شده پیشنهاد می‌گردد. مقایسه تکنیک‌های درونیابی نیز نشان داد روش کریجینگ معمولی و توابع پایه شعاعی با حداقل خطا، بهترین روش برای تجزیه و تحلیل مکانی بارش و دما هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatio-temporal Analysis of Temperature and Precipitation Trends in Tashk-Bakhtegan Watershed

نویسندگان [English]

  • somaye Imani 1
  • Ashkan Farokhnia 2
  • saeid morid 3
  • Reza Roozbahani 4
1 Department of environment engineering-water resources, faculty of environment, College of Engineering, University of Tehran.
2 The Head of Surface Water Group, Water Research Institute
3 Professor, Water Resource Engineering Group, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
4 Head of Department of Water Resources Studies and Research
چکیده [English]

In the present era, climate change and its impact on available water resources are one of the main challenges. In this regard, temporal and spatial analysis of temperature and precipitation, which are important parameters in determining the status of water resources, can be used to assess the hydro-climatological conditions of the watershed and appropriate management policies. In this research, the trend in precipitation and temperature distribution over 30 years testing period of 1981-2010 was investigated using non-parametric tests such as Man-Kendal, Spearman, Sen’s Slope, and Pettit. Afterward, interpolation techniques, such as IDW, LPI, GPI and RBF were used to detect spatially trends at the watershed. The results showed that precipitation decreased by 14.3% during the period 1981-2010 and the temperature increased by 3.5%, with changes in precipitation and temperature occurring in 2004 and 1985, respectively. However, the negative trend in precipitation was not significant in contrast to the positive temperature trend during the study period. A comparative analysis of interpolation techniques shows that Ordinary Kriging and Radial Basis Functions with least error are the best methods for spatial analysis of precipitation and temperature, respectively.

کلیدواژه‌ها [English]

  • Temporal and spatial trends
  • Precipitation
  • Temperature
  • Tashk-bakhtegan Watershed
  • Interpolation
[1] P.A. Bostan and Z. Akyürek, Exploring the mean annual precipitation and temperature values over Turkey by using environmental variables. ISPRS Joint Workshop Visualization and Exploration of Geospatial Data. University of Applied Sciences, Stuttgart, 2007.
[2] M. Cannarozzo, L.V. Noto, F. Viola, Spatial distribution of rainfall trends in Sicily (1921–2000), Physics and Chemistry of the Earth journal, 31(2006) 1201–1211.
[3] N. Diodato, G. Tartari, G. Belocchi, Geospatial rainfall modeling at eastern Nepalese highland from ground environmental data, Water Resource Management journal, 24(2010) 2703–2720.
[4] Q. Liu, Z. Yang, B. Cui, Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. Journal of Hydrology, 361.3(2008) 330-338.
[5] Y. Chen, K. Takeuchi, C. Xu, Y. Chen, Z. Xu, Regional climate change and its effects on river runoff in the Tarim Basin, China, Hydrological Processes journal, 20.10(2006) 2207-2216.
[6] M. Minaei and M. Irannezhad, Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades, Theoretical and applied climatology, 131, no. 1-2 (2018): 167-179.
[7] R.E. Chandler and E.M. Scott, Statistical methods for trend detection and analysis in the environmental sciences. John Wiley and Sons. West Sussex, UK, 2012.
[8] WMO, Climatic Change, WMO Technical Note No. 79 (2012) 79 pp.
[9] Y.C. Chen, M.Y. Cheng, H.T. Wu, Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors, Journal of the Royal Statistical Society, Series B (Statistical Methodology), 76.3(2014) 651-682.
[10] W. Lou, L. Wu, Y. Mao, K. Sun, Precipitation and temperature trends and dryness/wetness pattern during 1971–2015 in Zhejiang Province, southeastern China, Theoretical and Applied Climatology journal, (2017) 1-11.
[11] T. Raziei, P.D. Arasteh, B. Saghafian, Annual rainfall trend in arid and semi-arid regions of Iran. ICID 21st European regional conference. Frankfurt (Odder), Germany; Slubice, Poland, (2005) 15-19.
[12] P. Sonali, and D.N. Kumar, Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476 (2013) 212227.
[13] M.N. Khaliq, T.B. Ouarda, P. Gachon, L. Sushama, A. St-Hilaire, Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers, Journal of Hydrology, 368.1(2009) 117-130.
[14] L. Xiong and S. Guo, Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station, Hydrological Sciences Journal, 49.1(2004) 99-112.
[15] W. Wang, Q. Shao, S. Peng, Z. Zhang, W. Xing, G. An, B. Yong, Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China, Stochastic environmental research and risk assessment journal, 25.7(2011) 881-895.
[16] Z.X. Xu, K. Takeuchi, H. Ishidaira, Monotonic trend and step changes in Japanese precipitation, Journal of hydrology, 279.1(2003)144-150.
[17] D. Love, S. Uhlenbrook, S. Twomlow, P.V.D. Zaag, Changing hydroclimate and discharge patterns in the northern Limpopo Basin, Zimbabwe, Water SA, 36(2010), .053-533
[18] T. Mavromatis, and D. Stathis, Response of the water balance in Greece to temperature and precipitation trends, Theoretical and Applied Climatology journal, .42-31:2-1 )1102(401
[19] E. Kahya and S. Kalaycı, Trend analysis of stream flow in Turkey, Journal of Hydrology, 289(2004) 1-4: 128-144.
[20] P.G. Oguntunde, B.J. Abiodun, G. Lischeid, Rainfall trends in Nigeria, 1901–2000, Journal of Hydrology, 411.3-4 (2018) 207-218.
[21] Q. Zhang, C.Y. Xu, Z. Zhang, Y.D. Chen, C.L. Liu, H. Lin , Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation, Journal of Hydrology, 353. 3-4(2008) 215-227.
[22] S. Malakar, S. Goswami, A. Chakrabarti, An Online Trend Detection Strategy for Twitter Using Mann– Kendall Non-Parametric Test. In Industry Interactive Innovations in Science, Engineering and Technology. Springer, Singapore, (2018) 185-193.
[23] M. Piniewski, P. Marcinkowski, Z.W. Kundzewicz, Trend detection in river flow indices in Poland, Acta Geophysica journal, (2018) 1-14.
[24] W. Aeschbach-Hertig, T. Gleeson, Regional strategies for the accelerating global problem of groundwater depletion, Nature Geoscience journal, 5.12(2012) 853-861.
[25] M.G. Kendall, Rank correlation methods, Charles Griffin, London, 1948.
[26] W. Ashiq, M. C. Zhao, J. Ni, m. akhtar, GIS-based high-resolution spatial interpolation of precipitation in mountain plain areas of Upper Pakistan for regional climate Change impact studies, Theoretical and Applied Climatology journal, 99(2010) 239-253.
[27] M. Hamidianpour, M. Saligheh, GH.A. Ghalhari, Application of Various Interpolation Methods for Drought Spatial Monitoring and Analysis Case: Khorasan Razavi Province, Geography and Development Iranian Journal, 2.30(2012) 57-70. (In Farsi).
[28] M.H. Mahdian, N.GH. Ghiasi, S.M. Mousavinezhad, Investigation of Different Interpolation Methods in Estimating Monthly Rainfall Data in Central Region of Iran, Journal of Water and Soil Science, 1.7(2003) 33-46. (In Farsi)
[29] A. Eymen, Ü. Köylü, Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam, Meteorology and Atmospheric Physics journal, (2018) 1-12.
[30] H. Yavuz, S. Erdoğan, Spatial analysis of monthly and annual precipitation trends in Turkey, Water resources management journal, 26.3(2012) 609-621.