بهبود پیش بینی بارش ماهانه با استفاده از مدل تلفیقی بر پایه روش کرنل- تبدیل موجک و تجزیه ی یکپارچه مد تجربی کامل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه تبریز، ایران

2 مهندسی و مدیریت منابع آب،دانشکده عمران، دانشگاه تبریز

چکیده

بارش یکی از مهم‌ترین اجزای چرخة آب بوده و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون برآورد سیلاب، خشکسالی، برنامه‌ریزی آبیاری و مدیریت حوضه‌های آبریز اهمیت زیادی دارد. در تحقیق حاضر، پیش‌بینی بارش ماهانه ایستگاه تبریز با استفاده از روش هوشمند رگرسیون فرآیند گاوسی (GPR) بر پایه روش تجزیه یکپارچه مد تجربی ﮐﺎﻣﻞ (CEEMD) و تبدیل موجک (WT) مورد بررسی قرار گرفته است. در این راستا، مدلهای متفاوتی بر اساس شاخصهای پیوند از دور و عناصر اقلیمی تعریف شد و نرخ تأثیر پارامترهای ورودی مختلف مورد بررسی قرار گرفت. نتایج حاصل از تحلیل مدلها قابلیت و کارایی بالای روش به کار رفته را در تخمین میزان بارش ماهانه به خوبی نشان داد. ملاحظه گردید که در پیش بینی بارش ماهانه، شاخصهای پیوند از دور NAO, Nino3 ,MEI و عناصر اقلیمی شامل میانگین دمای ماهانه و رطوبت نسبی و همچنین بارش مربوط به ماه های گذشته در پیش بینی مقادیر بارش تاثیرگذار بوده و موجب بهبود نتایج مدل ها می گردد. در بررسی روش های تجزیه ی یکپارچه مد تجربی کامل و تبدیل موجک گسسته مشاهده گردید که تجزیه براساس تبدیل موجک منجر به نتایج دقیق تری می گردد. ﺑﻬﺘﺮﻳﻦ ﺣﺎﻟﺖ ارزﻳﺎﺑﻲ برای داده های آزﻣﻮن با استفاده از تجزیه ی تبدیل موجک در ﺣﺎﻟﺖ مدلسازی بر اساس داده های اقلیمی و عناصر پیوند از دور با مقادیر 889/0DC=، 961/0R= و 036/0RMSE=، بدست آمد. همچنین براساس نتایج آنالیز حساسیت مشخص گردید Pt-3 تاثیرگذارترین پارامتر در مدل سازی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monthly precipitation prediction improving using the integrated model based on kernel-wavelet and complementary ensemble empirical mode decomposition

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • roghayeh ghasempour 2
1 Civil Engineering Department, Tabriz University, Tabriz, Iran.
2 Water resource engineering and management, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Precipitation is one of the most important components of water cycle and plays an important role in assessing the climatic characteristics of each region. Estimates of monthly rainfall are important for various purposes such as flood estimation, drought, irrigation planning, and river basin management. In the present study, the monthly rainfall of Tabriz station was investigated using the intelligent Gaussian Process Regression (GPR) method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Wavelet Transform (WT). In this regard, different models were defined based on teleconnection patterns and climatic elements, and the impact of different input parameters was assessed. The obtained results from the models proved the high capability and efficiency of the applied method in predicting the monthly precipitation. It was observed that in prediction of the monthly precipitation, NAO, Nino3, MEI and climatic elements including mean monthly temperature and relative humidity, as well as precipitation related to the previous months, are effective in prediction and improve the models accuracy. The results showed that time series decomposition based on wavelet transformation led to more accurate outcomes compared to the complementary ensemble empirical mode decomposition. The best evaluation of test series using wavelet transform decomposition was obtained for the state of modeling based on teleconnection patterns and climatic elements with the values of DC=0.889, R=0.961 and RMSE=0.036. Also, based on the sensitivity analysis, Pt-3 was found to be the most effective parameter in modeling.

کلیدواژه‌ها [English]

  • Climatic elements
  • Empirical mode
  • GPR
  • Precipitation
  • Wavelet transform