بررسی استهلاک انرژی ناشی از بکارگیری صفحات مشبک قائم در پایین دست شیب‌شکن‌های مایل با روش ترکیبی عصبی – فازی تطبیق‌پذیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه تبریز، تبریز، ایران.

2 دانشیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

3 دانشجوی کارشناسی ارشد عمران آب و سازه های هیدرولیکی، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

چکیده

مطالعه حاضر با هدف بررسی استهلاک انرژی ناشی از بکارگیری صفحات مشبک به صورت قائم با دو نسبت تخلخل در پایین­دست شیب­شکن­های مایل با سه زاویه متفاوت، دو ارتفاع شیب­شکن و محدوده­ی دبی 200-700 لیتر بر دقیقه با بررسی 140 مدل آزمایشگاهی مختلف انجام شد. نتایج نشان داد که استفاده از صفحات مشبک منجر به افزایش حداقل 407 و حداکثر 903 درصدی راندمان استهلاک انرژی نسبی کل، نسبت به شیب­شکن مایل ساده شد. روابطی برای تخمین استهلاک انرژی نسبی ناشی از بکارگیری صفحات مشبک قائم در پایین­دست شیب­شکن­های مایل با معیارهای ارزیابی قابل قبول ارائه گردید. همچنین سهم هر کدام از سیستم­های مستهلک کننده انرژی (سازه و جریان) ارائه شد. در ادامه از مدل­های هوشمند، شبکه عصبی مصنوعی (ANN) و عصبی – فازی تطبیق­پذیر (ANFIS) برای تخمین استهلاک انرژی نسبی با استفاده از 3 پارامتر θ، P و zyc/  با استفاده از معیارهای ارزیابی مورد مقایسه قرار گرفت نتایج تحقیق نشان داد مدل عصبی – فازی تطبیق­پذیر با مقادیر R2 و RMSE به ترتیب برابر با 996/ 0و 006/0 نسبت به مقادیر  مدل شبکه عصبی مصنوعی به ترتیب برابر 992/0 و 008/0 از قابلیت بالائی در تخمین استهلاک انرژی نسبی برخوردار می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Study of Energy Dissipation Due to the Use of Vertical Screen in the Downstream of Inclined Drops by Adaptive Neuro-Fuzzy Inference System (ANFIS)

نویسندگان [English]

  • Reza Norouzi Sarkarabad 1
  • Rasoul Daneshfaraz 2
  • Ali Bazyar 3
1 Department of water engineering, Tabriz University, Tabriz, Iran.
2 Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
3 Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
چکیده [English]

The aim of the current study, investigate the energy dissipation of the use of the vertical screen with two porosity ratios downstream of the inclined drop with three different angles, two heights of the drop, and the range of 200-700 l/min with an analysis of 140 laboratory models. The results revealed that the use of screens caused by an increase of at least 407% and a maximum of 903% of total relative energy dissipation efficiency to the plain inclined drop. The equations were presented to estimate the relative energy dissipation due to the use of a vertical screen downstream of the inclined drop with acceptable assessment criteria. Also, the contribution of each of the energy dissipation systems was presented. Then, intelligent models, Artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) were compared to estimate the relative energy dissipation using three parameters θ, P, and yc/∆z using evaluation criteria. The values of R2 and RMSE for the ANFIS model, were 0.996 and 0.006, respectively, and for the ANN model were 0.992 and 0.008 respectively, which revealed the higher accuracy of the ANFIS model in the estimation of the relative energy dissipation than the ANN.

کلیدواژه‌ها [English]

  • Energy depreciation
  • Inclined drop
  • Intelligent models
  • Screen
  • Sub-critical flow
[1]    I.I. Esen, J.M. Alhumoud, K.A. Hannan, Energy Loss at a Drop Structure with a Step at the Base, Journal of Water international, 29(4) (2004) 523-529.
[2]    Y.M. Hong, H.S. Huang, S. Wan, Drop characteristics of free-falling nappe for aerated straight-drop spillway, Journal of Hydraulic Research, 48(1) (2010) 125-129.
[3]    A.R. Kabiri-Samani, E. Bakhshian, M.R. Chamani, Flow characteristics of grid drop-type, dissipaters, Journal of Flow Measurement and Instrumentation, 54(298-306) (2017).
[4]    R. Daneshfaraz, S. Sadeghfam, V. Hasannia, Experimental investigating effect of Froude number on hydraulic parameters of vertical drop with supercritical flow upstream, Amirkabir Journal of Civil Engineering, (2019).
[5]    C.E. Kindsvater, The hydraulic jump in sloping channels, Transactions ASCE, 1944.
[6]    W.E. Wagner, Hydraulic Model Studies of the Check Intake Structure-Potholes East Canal, 1956.
[7]    A.J. Peterka, Hydraulic design of stilling basins and energy dissipaters engineering monograph, US Bureau of Reclamation, Denver Colorado, 1958.
[8]    A. Ohtsu, Y. Yasuda, Hydraulic jump in sloping channels, Journal of Hydraulic Engineering, 11(7) (1991) 905-921.
[9]    M. Sholichin, S. Akib, Development of drop number performance for estimate hydraulic jump on vertical and sloped drop structure, International Journal of Physical Sciences, 5(11) (2010) 1678-1687.
[10]   A. Moradi Sabz Koohi, S.M. Kashefipour, M. Bina, Experimental Comparison of Energy Dissipation on Drop Structures, JWSS-Isfahan University of Technology, 15(56) (2011) 209-223.
[11]   N. Rajaratnam, K.I. Hurtig, Screen-type energy dissipator for hydraulic structures, Journal of Hydraulic Engineering, 126(4) (2000) 310-312.
[12]   P. Cakir, Experimental investigation of energy dissipation through screens Middle East Technical University, Ankara, Turkey, 2003.
[13]   G. Balkis, Experimental investigation of energy dissipation through inclined screens Middle East Technical University, Ankara,Turkey, 2004.
[14]   V. Aslankara, Experimental investigation of tailwater effect on the energy dissipation through screens, Middle East Technical University, Ankara, Turkey, 2007.
[15]   S. Sadeghfam, A.A. Akhtari, R. Daneshfaraz, G. Tayfur, Experimental investigation of screens as energy dissipaters in submerged hydraulic jump, Turkish Journal of Engineering and Environmental Sciences, 38(2) (2015) 126-138.
[16]   R. Daneshfaraz, S. Sadeghfam, A. Rezazadeh Joudi, Experimental investigation on the effect of screen’s location on the flow's energy dissipation, Journal of Irrigation and Drainage Structures Engineering Research, 17(67) (2017) 47-62.
[17]   R. Daneshfaraz, S. Sadeghfam, A. Ghahramanzadeh, Three-dimensional numerical investigation of flow through screens as energy dissipators, Canadian Journal of Civil Engineering, 44(10) (2017) 850-859.
[18]   M. Rezaie, A. Qhaderi, R. Daneshfaraz, Experimental Investigation of Clay and Nano-Clay Montmorillonite Effect on Scour Reduction at Downstream of Screen, Journal of Irrigation and Drainage Structures Engineering Research, 19(73) (2019) 1-16.
[19]   R. Norouzi, R. Daneshfaraz, A. Ghaderi, Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines, Applied Water Science, 9(7) (2019) 148.
[20]   S. Sadeghfam, R. Daneshfaraz, R. Khatibi, O. Minaei, Experimental studies on scour of supercritical flow jets in upstream of screens and modelling scouring dimensions using artificial intelligence to combine multiple models (AIMM), Journal of Hydroinformatics,  (2019).
[21]   B.A. Bakhmeteff, Hydraulics of open channels 1932.
[22]   M.A. Ghorbani, R. Khatibi, B. Hosseini, M. Bilgili, Relative importance of parameters affecting wind speed prediction using artificial neural networks, Journal of Theor Appl Climatol 114(1) (2013).
[23]   H. Tabari, S. Marofi, A. Savziparvar, Estimation of daily pan evaporation using artificial neural networks, Journal of Irrigation Science, 16(1) (2010) 47-59.
[24]   E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic system, Journal of Fuzzy Sets and Systems 26 (1997) 1182 -1191.
[25]   A. Tilmant, P. Fortemps, M. Vanclooster, Effect of averaging operator in fuzzy optimization of reservoir operation, Journal of Water Resources Management 16 (2002) 1-22.
[26]   N. Rajaratnam, Turbulent jets Elsevier, 1976.