[1]Y. Shi, S. Guo, P. Sun, The role of infrastructure in China’s regional economic growth, Journal of Asian Economics, 49 (2017) 26-41.
[2]E. Ivanova, J. Masarova, Importance of road infrastructure in the economic development and competitiveness, Economics Management, 18(2) (2013) 263-274.
[3]R. Engström, The Roads’ Role in the Freight Transport System, Transportation Research Procedia, 14 (2016) 1443-1452.
[4]C.Y. Chan, B. Huang, X. Yan, S. Richards, Investigating effects of asphalt pavement conditions on traffic accidents in Tennessee based on the pavement management system )PMS(, Journal of advanced transportation, 44(3) (2010) 150-161.
[5]ASCE, 2017 infrastructure report card, Roads, ASCE Reston, VA, 2017.
[6]M.Y. Shahin, Pavement management for airports, roads, and parking lots, 1994.
[7]H. Zakeri, F.M. Nejad, A. Fahimifar, Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review, Archives of Computational Methods in Engineering, 24(4) (2017) 935-977.
[8]H. Zakeri, F.M. Nejad, A. Fahimifar, Rahbin: A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection, Automation in Construction, 72(Part 2) (20160 211-235.
[9]C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, P. Fieguth, A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure, Advanced Engineering Informatics, 29(2) (2015) 196-210.
[10]T.B. Coenen, A. Golroo, A review on automated pavement distress detection methods, Cogent Engineering, 4(1) (2017) 1374822.
[11]N.-D. Hoang, An Artificial Intelligence Method for Asphalt Pavement Pothole Detection Using Least Squares Support Vector Machine and Neural Network with Steerable Filter-Based Feature Extraction, Advances in Civil Engineering, 2018 (2018) 12.
[12]P. Wang, Y. Hu, Y. Dai, M. Tian, Asphalt Pavement Pothole Detection and Segmentation Based on Wavelet Energy Field, Mathematical Problems in Engineering, 2017 (2017) 13.
[13]B. Mataei, F. Moghadas Nejad, M. Zahedi, H. Zakeri, Evaluation of pavement surface drainage using an automated image acquisition and processing system, Automation in Construction, 86 (2018) 240-255.
[14]F.M. Nejad, N. Karimi, H. Zakeri, Automatic image acquisition with knowledge-based approach for multidirectional determination of skid resistance of pavements, Automation in Construction, 71(Part 2) (2016) 414-429.
[15]K. Kamal, S. Mathavan, T. Zafar, I. Moazzam, A. Ali, S.U. Ahmad, M. Rahman, Performance assessment of Kinect as a sensor for pothole imaging and metrology, International Journal of Pavement Engineering, 19(7) (2018) 565-576.
[16]Y.-C. Tsai, A. Chatterjee, Pothole Detection and Classification Using 3D Technology and Watershed Method, Journal of Computing in Civil Engineering, 32(2) (2017) 04017078.
[17]J.Y.-C. Tsai, Z.-H. Wang, F. Li, Assessment of rut depth measurement accuracy of point-based rut bar systems using emerging 3d line laser imaging technology, Journal of Marine Science and Technology, 23)3( )2015( 322-330.
[18]J.Y.-C. Tsai, F. Li, Y.-C. Wu, A new rutting measurement method using emerging 3D line-laser-imaging system, International Journal of Pavement Research and Technology, 6(5) (2013) 667-672.
[19]S. Dai, K. Hoegh, 3D step frequency GPR Asphalt pavement stripping detection: Case study evaluating filtering approaches, in: Advanced Ground Penetrating Radar (IWAGPR), 2017 9th International Workshop on, IEEE, 2017, pp. 1-7.
[20]S. Li, C. Yuan, D. Liu, H. Cai, Integrated processing of image and GPR data for automated pothole detection, Journal of computing in civil engineering, 30(6) (2016) 04016015.
[21]M. Solla, S. Lagüela, H. González-Jorge, P. Arias, Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings, NDT & E International, 62 (2014) 55-65.
[22]H. Song, K. Baek, Y. Byun, Pothole detection using machine learning, Advanced science and technology letters, 150 (2018) 151-155.
[23]M.R. Carlos, M.E. Aragón, L.C. González, H.J. Escalante, F. Martínez, Evaluation of Detection Approaches for
Road Anomalies Based on Accelerometer Readings-Addressing Who's Who, IEEE Transactions on Intelligent Transportation Systems, (20180.
[24]A. Fox, B.V. Kumar, J. Chen, F. Bai, Multi-lane pothole detection from crowdsourced undersampled vehicle sensor data, IEEE Transactions on Mobile Computing, 16(12) (2017) 3417-3430.
[25]S. Nakashima, S. Aramaki, Y. Kitazono, S. Mu, K. Tanaka, S. Serikawa, Application of ultrasonic sensors in road surface condition distinction methods, Sensors, 16(10) (2016) 1678.
[26]A. Bystrov, E. Hoare, T.-Y. Tran, N. Clarke, M. Gashinova, M. Cherniakov, Road surface classification using automotive ultrasonic sensor, Procedia Engineering, 168 (2016) 19-22.
[27]R. Madli, S. Hebbar, P. Pattar, V. Golla, Automatic detection and notification of potholes and humps on roads to aid drivers, IEEE Sensors Journal, 15(8) (2015) 4313-4318.
[28]J. Mehta, V. Mathur, D. Agarwal, A. Sharma, K. Prakasha, Pothole Detection and Analysis System (Pol) AS( for Real Time Data Using Sensor Networks, Journal of Engineering and Applied Sciences, 12(12) (2017) 3090-3097.
[29]J. Huang, W. Liu, X. Sun, A pavement crack detection method combining 2D with 3D information based on Dempster‐Shafer theory, Computer‐Aided Civil Infrastructure Engineering, 29(4) (2014) 299-313.
[30]G. Zhou, L. Wang, D. Wang, S. Reichle, Integration of GIS and data mining technology to enhance the pavement management decision making, Journal of Transportation Engineering, 136(4) (2009) 332-341.
[31]K. Gopalakrishnan, Deep Learning in Data-Driven Pavement Image Analysis and Automated Distress Detection: A Review, Data, 3(3) (20180 28.
[32]Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015) 436.
[33]C. Robert, Machine Learning, a Probabilistic Perspective, CHANCE, 27(2) (2014) 62-63.
[34]N.K. Warrier, K. Sathish, Object Detection on Roads using Deep Learning and Neural Networks, Journal of Network Communications Emerging Technologies 8(4) (2018).
[35]M. Kantardzic, Data mining: concepts, models, methods, and algorithms, John Wiley & Sons, 2011.
[36]K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, A. Agrawal, Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection, Construction and Building Materials, 157 (2017) 322-330.
[37]L. Deng, D. Yu, Deep learning: methods and applications, Foundations Trends® in Signal Processing, 7(3–4) (2014) 197-387.
[38]Y. LeCun, Y. Bengio, G.J.n. Hinton, Deep learning, 521(7553) (2015) 436.
[39]S. Dorafshan, R.J. Thomas, M. Maguire, Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete, Construction and Building Materials, 186 (2018) 1031-1045.
[40]Z. Tong, J. Gao, Z. Han, Z. Wang, Recognition of asphalt pavement crack length using deep convolutional neural networks, Road Materials and Pavement Design, 19(6) (2018) 1334-1349.
[41]Q. Zhu, Pavement crack detection algorithm Based on image processing analysis, in: Proceedings - 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2016, 2016, pp. 15-18.
[42]Y.O. Ouma, M. Hahn, Wavelet-morphology based detection of incipient linear cracks in asphalt pavements from RGB camera imagery and classification using circular Radon transform, Advanced Engineering Informatics, 30(3) (2016) 481-499.
[43]V. Ananth, P. Ananthi, V. Elakkiya, J. Priyadharshini, R. Shiyamili, Automatic Pavement Crack Detection Algorithm, International Innovative Research Journal of Engineering and Technology, 2 (2017).
[44]I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2016.
[45]J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.
[46]F. Gorunescu, Data Mining: Concepts, models and techniques, Springer Science & Business Media, 2011.
[47]E. Alpaydin, Introduction to machine learning, MIT press, 2009.
[48]A.T. Azar, S. Vaidyanathan, Computational intelligence applications in modeling and control, Springer, 2015.
[49]S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A review of classification techniques, 160 (2007) 3-24.
[50]I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, MIT press Cambridge, 2016.
[51]M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald, E. Muharemagic, Deep learning applications and challenges in big data analytics, Journal of Big Data, 2(10 (2015) 1.
[52]R. Vidal, J. Bruna, R. Giryes, S. Soatto, Mathematics of deep learning, arXiv preprint arXiv:.04741, (2017).
[53]T. Wiatowski, H. Bölcskei, A mathematical theory of deep convolutional neural networks for feature extraction, IEEE Transactions on Information Theory, 64(3) (2018) .6681-5481
[54]A. Bhandare, M. Bhide, P. Gokhale, R. Chandavarkar, Applications of Convolutional Neural Networks, International Journal of Computer Science Information Technologies, (2016) 2206-2215.
[55]S. Albelwi, A. Mahmood, A framework for designing the architectures of deep convolutional neural networks, Entropy, 19(6) (2017) 242.
[56]Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, The handbook of brain theory neural networks, 3361(10) (1995) 1995.
[57]K. Zhang, H. Cheng, B. Zhang, Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning, Journal of Computing in Civil Engineering, 32(2) (2018) 04018001.
[58]T. Wang, K. Gopalakrishnan, O. Smadi, A.K.J.T. Somani, Automated shape-based pavement crack detection approach, 33(3) (2018) 598-608.
[59]D. Seichter, M. Eisenbach, R. Stricker, G. H-M, How to Improve Deep Learning based Pavement Distress Detection while Minimizing Human Effort, in: Proc. Int. Conf. on, 2018, pp. 63-70.
[60]H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone, arXiv preprint arXiv:1801.09454, (2018).
[61]B. Li, K.C. Wang, A. Zhang, E. Yang, G. Wang, Automatic classification of pavement crack using deep convolutional neural network, International Journal of Pavement Engineering, (2018) 1-7.
[62]G. Ciaparrone, A. Serra, V. Covito, P. Finelli, C.A. Scarpato, R. Tagliaferri, A Deep Learning Approach for Road Damage Classification, in: Advanced Multimedia and Ubiquitous Engineering, Springer, 2018, pp. 655-661.
[63]Z. Tong, J. Gao, H. Zhang, Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks, Construction and Building Materials, 146 (2017) 775-787.
[64]Y. Liu, J. Yao, X. Lu, R. Xie, L. Li, DeepCrack: A Deep Hierarchical Feature Learning Architecture for Crack Segmentation, Neurocomputing, (2019).
[65]J. Singh, S. Shekhar, Road Damage Detection And Classification In Smartphone Captured Images Using Mask R-CNN, arXiv, (2018).
[66]K. Gopalakrishnan, H. Gholami, A. Vidyadharan, A. Choudhary, A. Agrawal, Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model, International Journal for Traffic Transport Engineering, 8 (2018) 1.
[67]Z. Tong, J. Gao, H. Zhang, Innovation for evaluating aggregate angularity based upon 3D convolutional neural network, Construction and Building Materials, 155 (2017) 919-929.
[68]M.A. Nielsen, Neural networks and deep learning, Determination press USA, 2015.
[69]H. Eom, H. Choi, Alpha-Pooling for Convolutional Neural Networks, arXiv preprint arXiv:.03436, (2018).
[70]D.C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, Barcelona, Spain, 2011, pp. 1237.
[71]L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A novel bandit-based approach to hyperparameter optimization, The Journal of Machine Learning Research, 18(1) (2017) 6765-6816.
[72]S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim, R.M. Patton, Optimizing deep learning hyper-parameters through an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, ACM, 2015, pp. 4.
[73]T. Domhan, J.T. Springenberg, F. Hutter, Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves, in: IJCAI, 2015, pp. 3460-3468.
[74]J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning algorithms, in: Advances in neural information processing systems, 2012, pp. 2951-2959.
[75]Y. Gao, K.M. Mosalam, Deep Transfer Learning for Image-Based Structural Damage Recognition, 33(9) (2018) 748-768.
[76]K. Zhang, H. Cheng, A Novel Pavement Crack Detection Approach Using Pre-selection Based on Transfer Learning, in: Y. Zhao, X. Kong, D. Taubman (Eds.) Image and Graphics, Springer International Publishing, Cham, 2017, pp. 273-283.
[77]S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on knowledge data engineering, 22(10) (2010) 1345-1359.
[78]O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, Imagenet large scale visual recognition challenge, International Journal of Computer Vision, 115(3) (2015) 211-252.
[79]A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp. 1097-1105.
[80]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
[81]K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
[82]F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K.J.a.p.a. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size, (2016).
[83]K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[84]G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: CVPR, 2017, pp. 3.
[85]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.
[86]F.M. Nejad, H. Zakeri, An optimum feature extraction method based on Wavelet–Radon Transform and Dynamic Neural Network for pavement distress classification, Expert Systems with Applications, 38(8) (2011) 9442-9460.
[87]F. Moghadas Nejad, H. Zakeri, An expert system based on wavelet transform and radon neural network for pavement distress classification, Expert Systems with Applications, 38(6) (2011) 7088-7101.
[88]R.C. Gonzalez, R.E. Woods, Digital image processing, 2 (2007).