[1]Miyamoto, Y. A., Kaysser, W., Rabin, B. H., kawasaki, A., and Ford, R. G., Functionally Graded Material: Desing, Processing and Applications, United States, 1999.
[2]M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota, "FGM-90," in Proceedings of the First International Symposium on Functionally Gradient Materilas, FGM Forum, Tokyo, Japan, 1990.
[3]Koizumi, M., “The Concept of FGM”, Ceramic Transactions, Functionally Gradient Materials, Vol. 34, pp. 3-10, 1993.
[4]S. Srinivas, C. J. Rao, A. J. J. o. s. Rao, and vibration, "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates," vol. 12, no. 2, pp. 187-199, 1970.
[5]S. Srinivas, A. J. I. J. o. S. Rao, and Structures, "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates," vol. 6, no. 11, pp. 1463-1481, 1970.
[6]M. J. J. o. S. Levinson and Vibration, "Free vibrations of a simply supported, rectangular plate: an exact elasticity solution," vol. 98, no. 2, pp. 289-298, 1985.
[7]A. K. Noor and W. S. J. J. o. A. M. Burton, "Threedimensional solutions for antisymmetrically laminated anisotropic plates," vol. 57, no. 1, pp. 182-188, 1990.
[8]C.-C. Lin and W. J. J. o. S. V. King, "Free transverse vibrations of rectangular unsymmetrically laminated plates," vol. 36, pp. 91-103, 1974.
[9]D. J. J. o. s. Gorman and vibration, "An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions," vol. 93, no. 2, pp. 235-247, 1984.
[10]J. Reddy, N. J. J. o. s. Phan, and vibration, "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory," vol. 98, no. 2, pp. 157-170, 1985.
[11]M. J. J. o. S. Di Sciuva and Vibration, "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model," vol. 105, no. 3, pp. 425-442, 1986.
[12]A. Ferreira, R. Batra, C. Roque, L. Qian, and R. J. C. S. Jorge, "Natural frequencies of functionally graded plates by a meshless method," vol. 75, no. 1-4, pp. 593-600, 2006.
[13]S. Hosseini-Hashemi, M. Fadaee, and S. R. J. I. J. o. M. S. Atashipour, "A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates," vol. 53, no. 1, pp. 11-22, 2011.
[14]S. Hosseini-Hashemi, M. Fadaee, and S. R. J. C. S. Atashipour, "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure," vol. 93, no. 2, pp. 722-735, .1102
[15]A. Allahverdizadeh, R. Oftadeh, M. Mahjoob, and M. J. A. M. S. S. Naei, "Homotopy perturbation solution and periodicity analysis of nonlinear vibration of thin rectangular functionally graded plates," vol. 27, no. 2, pp. 210-220, 2014.
[16]P. Malekzadeh, A. J. M. o. A. M. Alibeygi Beni, and Structures, "Nonlinear free vibration of in-plane functionally graded rectangular plates," vol. 22, no. 8, pp.336-640-2015.
[17]A. J. A. M. Alibeigloo, "Free vibration analysis of nanoplate using three-dimensional theory of elasticity," vol. 222, no. 1-2, p. 149, 2011.
[18]A. Setoodeh, P. Malekzadeh, and A. J. P. o. t. I. o. M. E.Vosoughi, Part C: Journal of Mechanical Engineering Science, "Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory," vol. 226, no. 7, pp. 1896-1906, 2012.
[19]P. A. Sharabiani and M. R. H. J. C. P. B. E. Yazdi, "Nonlinear free vibrations of functionally graded nanobeams with surface effects," vol. 45, no. 1, pp. 581-586, 2013.
[20]M. Talebitooti, M. Ghayour, S. Ziaei-Rad, and R. J. A. o. A. M. Talebitooti, "Free vibrations of rotating composite conical shells with stringer and ring stiffeners," vol. 80, no. 3, pp. 201-215, 2010.
[21]S. Kidane, G. Li, J. Helms, S.-S. Pang, and E. J. C. P. B. E. Woldesenbet, "Buckling load analysis of grid stiffened composite cylinders," vol. 34, no. 1, pp. 1-9, 2003.
[22]B. Mustafa, R. J. C. Ali, and structures, "An energy method for free vibration analysis of stiffened circular cylindrical shells," vol. 32, no. 2, pp. 355-363, 1989.
[23]J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis. CRC press, 2004.
[24]W.-Y. Jung and S.-C. J. A. M. M. Han, "Static and eigenvalue problems of sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory," vol. 39, no. 12, pp. 3506-3524, 2015.
[25]X.-L. Huang, H.-S. J. I. J. o. S. Shen, and Structures, "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments," vol. 41, no. 9-10, pp. 2403-2427, 2004.
[26]H.-S. Shen, Functionally graded materials: nonlinear analysis of plates and shells. CRC press, 2016.
[27]R. Gunes, M. Aydin, M. K. Apalak, and J. J. C. S. Reddy, "The elasto-plastic impact analysis of functionally graded circular plates under low-velocities," vol. 93, no. 2, pp. 860-869, 2011.
[28]T. J. I. J. o. I. E. Hause, "Advanced functionally graded plate-type structures impacted by blast loading," vol. 38, no. 5, pp. 314-321, 2011.
[29]Abaqus Analysis User’s Manual Version 6.14. Dassault Systemes Simulia Crop.: Providence, RI, USA, 2014.
[30]R. Jome Manzari and F. Shahabian, "The Geometrically nonlinear dynamic response of metal-ceramic FGM plates under the blast loading", Journal of Structural and Construction Engineering, [online] vol. 5, pages 16, 2018, (in Persian).
[31]Ramu, I. and Mohanty, S.C., 2012. Study on free vibration analysis of rectangular plate structures using finite element method. Procedia engineering, 38, pp.2758-2766
[32]C. Aksoylar, A. Ömercikoğlu, Z. Mecitoğlu, and M. H. J. C. S. Omurtag, "Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods," vol. 94, no. 2, pp. 731-744, 2012.
[33]A. S. Nowak and K. R. Collins, Reliability of structures. CRC Press, 2012.