[1]. Zarei, H.R., Uromeihy, A., Sharifzadeh, M., 2013. A New Tunnel Inflow Classification (TIC) System through Sedimentary Rock Masses. Tunn. Undergr. Space Technol., 34, 1–12.
[2]. Aalianvari, A., Katibeh, H., Sharifzadeh, M., 2012. Application of Fuzzy Delphi AHP Method for the Estimation and Classification of Ghomrud Tunnel from Groundwater Flow Hazard. Arab. J. Geosci., 5, 275–284.
[3]. Tammetta, P., 2013. Estimation of the Height of Complete Groundwater Drainage Above Mined Longwall Panels. Groundwater, 51(5) 723–734.
[4]. Kusaka, T., Sreng, S., Uzuoka, R., Ito, R., Mochizuki, A., 2011. Study on ground upheaval caused by the rise in groundwater level by centrifuge tests and by numerical simulations. Japanese Geotechnical Journal, 6(3), 439-454. https://doi.org/10.3208/jgs.6.439
[5]. Kusaka, T., Sreng, S., Tanaka, H., Sugiyama, H., Ito, T., Kobayashi, K., 2015. Experimental study on influence of ground rebound on tunnels caused by groundwater restoration. The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 1578-1582. http://doi.org/10.3208/jgssp.JPN-146
[6]. Goodman, R., Moye, D., Schalkwyk, A., Javendel, I.,1965. Groundwater Inflow During Tunnel Driving. Eng. Geol., 1, 150–162.
[7]. El Tani, M., 2003. Circular Tunnel in a Semi-Infinite Aquifer. Tunn. Undergr. Space Technol., 18(1), 49–55.
[8]. Park, K.-H., Owatsiriwong, A., Lee, J.-G., 2008. Analytical Solution for Steady-State Groundwater Inflow into a Drained Circular Tunnel in a Semi-Infinite Aquifer: A Revisit. Tunn. Undergr. Space Technol., 23, 206–209.
[9]. Huangfu, M., Wang, M.-S., Tan, Z.-S., Wang, X-.Y., 2010. Analytical Solutions for Steady Seepage into an Underwater Circular Tunnel. Tunn. Undergr. Space Technol., 25, 391–396.
[10]. Anagnostou, G., 1995. The Influence of Tunnel Excavation on Hydraulic Head. Int. J. Numer. Anal. Meth. Geomech., 19, 725-746.
[11]. Molinero, J., Samper, J., Juanes, R., 2002. Numerical Modeling of the Transient Hydrogeological Response Produced by Tunnel Construction in Fractured Bedrocks.Eng. Geol., 64, 369–386.
[12]. Li, D., Li, X., Li, C.C., Gong, F., Huang, B., Gong, F., Zhang, W., 2009. Case Studies of Groundwater Flow into Tunnels and an Innovative Water-Gathering System for Water Drainage. Tunn. Undergr. Space Technol., 24, 260–268.
[13]. Kurose, H., Ikeya, S., Chang, C.-S., Maejima, T., Shimaya, S., Tanaka, T., Aoki, K., 2014. Construction of Namikata underground LPG storage cavern in Japan. International Journal of the JCRM, 10, 15-24.
[14]. Jiang, X.-W., Wan, L., Jim Yeh, T.-C., Wang, X.-S., Xu, L., 2010. Steady-state discharge into tunnels in formations with random variability and depth–decaying trend of hydraulic conductivity. Journal of Hydrology, 387, 320–327.
[15]. Javadi M, Sharifzadeh M, Shahriar K. 2016. Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnel.Underg. Space Technol. 51: 424–438.
DOI:10.1016/j. tust.2015.09.003
[16]. Fernandez, G., Moon, J., 2010. Excavation-induced hydraulic conductivity reduction around a tunnel – Part 2: Verification of proposed method using numerical modeling. Tunn. Undergr. Space Technol., 25, 567–574.
[17]. Javadi, M., Sayadi, S., 2018. Stochastic discontinuum analysis of hydrocarbon migration probability around an unlined rock cavern based on the discrete fracture networks. Tunn. Undergr. Space Technol., 81, 41-54.
[18]. Butscher, C., Einstein, H. H., Huggenberger, P., 2011. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resources Research, 47,W11520. doi:10.1029/2011WR011023
[19]. Qi, T. Y., Lei, B., Wang, R., Li, Y., Li, Z.Y., 2018. Solidfluid-gas coupling prediction of harmful gas eruption in shield tunneling. Tunnelling and Underground Space Technology, 71, 126–137.
[20]. Bobet, A., 2010. Numerical Methods in Geomechanics. The Arabian Journal for Science and Engineering, 35(1B), 27-48. [21]. Indraratna, B., Ranjith, P., 1998. Effects of Boundary Conditions and Boundary Block Sizes on Inflow to an Underground Excavation- Sensivity Analysis. IMWA Symposium, Johannesburg.
[22]. Butscher, C., 2012. Steady-state groundwater inflow into a circular tunnel. Tunnelling and Underground Space Technology 32, 158–167.
[23]. Farhadian, H., Katibeh, H., Huggenberger, P., Butscher, C., 2016. Optimum model extent for numerical simulation of tunnel inflow in fractured rock Tunn. Undergr. Space Technol., 60, 21–29.
[24]. Javadi M, Sharifzadeh M, Shahriar K. 2016. Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnel.Underg. Space Technol. 51: 424–438.
DOI:10.1016/j. tust.2015.09.003
[25]. Javadi, M., Sayadi, S., 2018. Stochastic discontinuum analysis of hydrocarbon migration probability around an unlined rock cavern based on the discrete fracture networks. Tunn. Undergr. Space Technol., 81, 41-54.
[26]. Javadi, M., Sayadi, S., 2018. Upgrading the FNETF Computational Code for Modeling of Groundwater Inflow into Underground Excavations by Using the Stochastic Continuum Theory. Tunneling and Underground Space Engineering (TUSE), In press. (In Persian).
[27]. Javadi, M., Sharifzadeh, M., Shahriar, K., Sayadi, S. 2016. Migration Tracing and Kinematic State Concept Embedded in Discrete Fracture Network for Modeling Hydrocarbon Migration around Unlined Rock Caverns. Journal of Computers & Geosciences, 91, 105-118.doi:10.1016/j.cageo.2016.02.012