[1] A.B.Chilton, J.K. Shultis, and R.E. Faw, Principles of Radiation Shielding, Prentice-Hall Englewood Cliffs, 488 (1984).
[2] I.Akkurt, H.Akyıldırım , B.Mavi , S.Kilincarslan , C.Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Annals of Nuclear Energy, 37 (2010) 910-914.
[3] C. Basyigit, I.Akkurt, A.Akkas, S.Kilincarslan, B.Mavi, K.Gunoglu, Determination of Some Heavyweight Aggregate Half Value Layer Thickness Used for Radiation Shielding, in Proceedings of the International Congress on Advances Applied Physics and Materials Science, in Antalya, (2012).
[4] M.H.Kharita, S.Yousef , M.AlNassar, Review on the addition of boron compounds to radiation shielding concrete, Progress in Nuclear Energy, 53 (2011) 207211.
[5] A. Neville, Properties of Concrete, John Wiley and Sons,Inc. New York, 4 (1996).
[6] F. Bouzarjomehri, T. Bayat, M.H.Dashti, J.Ghisari, N.Abdoli, Co 60 γ-ray attenuation coefficient of barite concrete, Iran. J. Radiat. Res, (2006) 71-75.
[7] W.A. Kansouh, Reactor Fast and Slow Neutrons and Total Gamma Rays Distributions through Different Locally Preparea Concretes,Journal of Nuclear Energy Science & Power Generation Technology, (2013).
[8] M.H. Kharita, S.Yousef, M.AlNassar, The effect f carbon powder addition on the properties of hematite radiation shielding concrete, Progress in Nuclear Energy 51 (2009) 388-392.
[9] T. Korkut, A
.Karabulut, G
.Budak, Investigation of neutron shielding properties depending on number of boron atoms for colemating ulexite and tincal ores by experiments and FLUKA MONTE Carlo simulations, Applied Radiation and Isotops, 70 (2012) 341.
[10] H. Nulk, C
.Ipbuker, V.Gulik, A.Biland, A.Tkaczyk, The investigation of gamma and neutron shielding properties of concrete including basalt fibre for nuclear energy applications, Conference: 2nd International Symposium on Cement-based Materials for Nuclear Wastes, At Avignon, France, (2014).
[11] A. M. Madbouly, Amal A. El- Sawy, Calculation of Gamma and Neutron Parameters for Some Concrete Materials as Radiation Shields for Nuclear Facilities, International Journal of Emerging Trends in Engineering and Development, 3(8) (2018) 7-17.
[12] I.Akkurt, H.Akyıldırım, B.Mavi, S.Kilincarslan, C.Basyigit, Radiation shielding of concrete containing zeolite, Radiation Measurements, 45 (2010) 827-830.
[13] M.Gholipour Feizi, A.Mojtehedi, M.A.lotfollahi yaghin, Testing and Evaluating the Mechanical Properties of Concrete Made of Heavy Barite Aggregates, Structural Analysis Quarterly, 12(1) (2015) 35-42(in Persian.)
[14] A.Yadllahi, A.M.Ajorloo, A.R.zolfaghari, Protection against gamma rays using heavy concrete containing lead slag, Engineering Geology Journal, 9 (2016) 3193-3206(in Persian.)
[15] E.A.Whitehurst, Soniscope Tests Concrete Structures, Journal of the American Concrete Institute,47(1951)443-444.
[16] J.Ronald,M.Pellenq,A. Kushima, R.Shahsavari, J.Krystyn,V.Vliet,M.J.Buehler,S.Yip,F.J.Ulm,A realistic molecular model of cement hydrates, Proceedings of the National Academy of Sciences of the United States of America,106(38),2009,16102-16107
[17] S.H.Ghasemzadeh Mousavinejad, A.Rahmani, Investigating the effect of barite in concrete as a gamma-ray protective device, 10th International Congress on Civil Engineering,(2015) (in Persian.)
[18] S.H.Ghasemzadeh Mousavinejad, A.Shahrouzi, Mechanical and Shielding properties of Concretes Containing Different Percentages of Lead Slag and Silica Fume against Gamma-Ray, Concrete research,(2016) 59-71(in Persian.)