[1] PubChem, Sulfate, National Center for Biotechnology Information, in, PubChem Compound Database, 2017.
[2] P. Wexler, & Abdollahi, M, Encyclopedia of toxicology, in, Amsterdam: Academic Press/Elsevier, london, 2014, pp. 413-415.
[3] E. Iakovleva, E. Mäkilä, J. Salonen, M. Sitarz, M. Sillanpää, Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water, Chemical engineering journal, 259 (2015) 364-371.
[4] V. Ramachandran, Removal, control and management of total dissolved solids from process effluent streams in the non-ferrous metallurgical industry-A review, in: CQ Jia, V. Ramachandran et al. Proceedings of Water, Air and Land: Sustainability Issues in Mineral and Metal Extraction (WALSIM II) Symposium, 51st Annual Conference of Metallurgists, Niagara Falls, Canada, 2012, pp. 101-117.
[5] B. Van der Bruggen, A. Koninckx, C. Vandecasteele, Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration, Water research, 38(5) (2004) 1347-1353.
[6] I. Ňancucheo, D.B. Johnson, Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors, Hydrometallurgy, 150 (2014) 222-226.
[7] O. Agboola, T. Mokrani, E.R. Sadiku, A. Kolesnikov, O.I. Olukunle, J.P. Maree, Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water, Mine Water and the Environment, 36(3) (2017) 401-408.
[8] L. Zheng, X. Wang, X. Wang, Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening, Journal of Cleaner Production, 108 (2015) 525-533.
[9] Y.W. Yuan, Xiaojun & Rao, L & Cui, J, Advance treatment and reuse of dyeing reverse osmosis brine, Chinese Journal of Environmental Engineering, 9 (2015) 781-786.
[10] A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification–a review, Chemical Engineering Journal, 270 (2015) 244-271.
[11] P.-l. Sang, Y.-y. Wang, L.-y. Zhang, L.-y. Chai, H.-y. Wang, Effective adsorption of sulfate ions with poly (m-phenylenediamine) in aqueous solution and its adsorption mechanism, Transactions of Nonferrous Metals Society of China, 23(1) (2013) 243-252.
[12] I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, A review for coffee adsorbents, Journal of Molecular Liquids, 229 (2017) 555-565.
[13] E. Worch, Adsorption technology in water treatment: fundamentals, processes, and modeling, Walter de Gruyter, 2012.
[14] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrasonics sonochemistry, 21(1) (2014) 242-252.
[15] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review, Chemical engineering journal, 157(2-3) (2010) 277-296.
[16] S. Mor, K. Chhoden, K. Ravindra, Application of agro-waste rice husk ash for the removal of phosphate from the wastewater, Journal of cleaner production, 129 (2016) 673-680.
[17] W. Cao, Z. Dang, X.-Q. Zhou, X.-Y. Yi, P.-X. Wu, N.-W. Zhu, G.-N. Lu, Removal of sulphate from aqueous solution using modified rice straw: Preparation, characterization and adsorption performance, Carbohydrate polymers, 85(3) (2011) 571-577.
[18] V. Tangde, S. Prajapati, B. Mandal, N. Kulkarni, Study of Kinetics and Thermodynamics of Removal of Phosphate from Aqueous Solution using Activated Red Mud, International Journal of Environmental Research, 11(1) (2017) 39-47.
[19] د. بلارک, ف.ک. مصطفی پور, ع. جغتایی, کاربرد گل قرمز فعال شده برای جذب رنگزای اسید قرمز 88 از محلولهای آبی: مطالعات ایزوترمی ، سینتیکی و ترمودینامیکی, شیمى کاربردى, 11(38) (2016) 123-138.
[20] M.A. Zazouli, D.B. , Y.M. , M.B. , M.E. , Adsorption of Bisphenol from Industrial Wastewater by Modified Red Mud, Journal of Health and Development, 2(1) (2013) 1-0.
[21] O. Kazak, Y.R. Eker, I. Akin, H. Bingol, A. Tor, Green preparation of a novel red mud@ carbon composite and its application for adsorption of 2, 4-dichlorophenoxyacetic acid from aqueous solution, Environmental Science and Pollution Research, 24(29) (2017) 23057-23068.
[22] W. Liang, S.J. Couperthwaite, G. Kaur, C. Yan, D.W. Johnstone, G.J. Millar, Effect of strong acids on red mud structural and fluoride adsorption properties, Journal of colloid and interface science, 423 (2014) 158-165.
[23] C.-j. LIU, Y.-z. LI, Z.-k. LUAN, Z.-y. CHEN, Z.-g. ZHANG, Z.-p. JIA, Adsorption removal of phosphate from aqueous solution by active red mud, Journal of Environmental Sciences, 19(10) (2007) 1166-1170.
[24] B.E. Givens, Z. Xu, J. Fiegel, V.H. Grassian, Bovine serum albumin adsorption on SiO 2 and TiO 2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions, Journal of colloid and interface science, 493 (2017) 334-341.
[25] W. Cao, Z. Dang, B.-L. Yuan, C.-H. Shen, J. Kan, X.-L. Xue, Sorption kinetics of sulphate ions on quaternary ammonium-modified rice straw, Journal of Industrial and Engineering Chemistry, 20(4) (2014) 2603-2609.
[26] H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Research, 120 (2017) 88-116.
[27] O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O.S. Júnior, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies, Chemical Engineering Journal, 288 (2016) 778-788.
[28] X. Chen, Modeling of experimental adsorption isotherm data, Information, 6(1) (2015) 14-22.
[29] M. Ghazy, K. Harby, A.A. Askalany, B.B. Saha, Adsorption isotherms and kinetics of activated carbon/difluoroethane adsorption pair: theory and experiments, International Journal of Refrigeration, 70 (2016) 196-205.
[30] A. Dada, J. Ojediran, A.P. Olalekan, Sorption of from Aqueous Solution unto Modified Rice Husk: Isotherms Studies, Advances in Physical Chemistry, 2013 (2013).
[31] T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution, Journal of Molecular Liquids, 202 (2015) 165-175.
[32] I. Stepanov, The heats of chemical reactions: the Van't-hoff equation and calorimetry, Zeitschrift für Physikalische Chemie, 219(8) (2005) 1089-1097.
[33] U.R. Lakshmi, V.C. Srivastava, I.D. Mall, D.H. Lataye, Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye, Journal of Environmental Management, 90(2) (2009) 710-720.
[34] H. Deng, J. Lu, G. Li, G. Zhang, X. Wang, Adsorption of methylene blue on adsorbent materials produced from cotton stalk, Chemical Engineering Journal, 172(1) (2011) 326-334.
[35] M.K. Mondal, R. Garg, A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials, Environmental Science and Pollution Research, 24(15) (2017) 13295-13306.
[36] N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study, Dyes and pigments, 51(1) (2001) 25-40.
[37] V.S. Mane, I.D. Mall, V.C. Srivastava, Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash, Journal of Environmental Management, 84(4) (2007) 390-400.
[38] N. Johar, I. Ahmad, A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Industrial Crops and Products, 37(1) (2012) 93-99.
[39] A.S. Thajeel, Isotherm, kinetic and thermodynamic of adsorption of heavy metal ions onto local activated carbon, Aquatic Science and Technology, 1(2) (2013) 53-77.
[40] N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, Journal of Chemistry, 2017 (2017).
[41] F. Yu, Y. Chen, Y. Wang, C. Liu, W. Ma, Enhanced removal of iodide from aqueous solution by ozonation and subsequent adsorption on Ag-Ag2O modified on Carbon Spheres, Applied Surface Science, 427 (2018) 753-762.
[42] I. Bautista-Toledo, J. Rivera-Utrilla, M. Ferro-Garcia, C. Moreno-Castilla, Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid, Carbon, 32(1) (1994) 93-100.
[43] C.-H. Wu, C.-Y. Kuo, C.-F. Lin, S.-L. Lo, Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm, Chemosphere, 47(3) (2002) 283-292.