[1] M.J. Economides, K.G. Nolte, U. Ahmed, Reservoir stimulation, Wiley Chichester, 2000.
[2] J.L. Gidley, Recent advances in hydraulic fracturing, (1989).
[3] R.J. Clifton, A.S. Abou-Sayed, A variational approach to the prediction of the three-dimensional geometry of hydraulic fractures, in: SPE/DOE Low Permeability Gas Reservoirs Symposium, Society of Petroleum Engineers, 1981.
[4] A. Ingraffea, T. Boone, Simulation of hydraulic fracture in poroelastic rock, Numerical Methods in Geomechanics (Innsbruck 1988), Balkema, Rotterdam, (1988) 95-105.
[5] S.H. Advani, T. Lee, J. Lee, Three-dimensional modeling of hydraulic fractures in layered media: part I-finite element formulations, Journal of energy resources technology, 112(1) (1990) 1-9.
[6] J. Sousa, B. Carter, A. Ingraffea, Numerical simulation of 3D hydraulic fracture using Newtonian and power-law fluids, in: International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier, 1993, pp. 1265-1271.
[7] K. Shah, B. Carter, A. Ingraffea, Hydraulic fracturing simulation in parallel computing environments, in: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1997, pp. 474.
[8] D.I. Garagash, Plane-strain propagation of a fluid-driven fracture during injection and shutin: Asymptotics of large toughness, Engineering Fracture Mechanics, 73(4) (2006) 456-481.
[9] R. Nilson, Gas-driven fracture propagation, J. Appl. Mech.;(United States), 48 (1981).
[10] D. Spence, D. Turcotte, Magma driven propagation of cracks, Journal of Geophysical Research: Solid Earth (1978-2012), 90(B1) (1985) 575-580.
[11] E. Detournay, D. Garagash, The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid, Journal of Fluid Mechanics, 494 (2003) .23-1
[12] D. Spence, P. Sharp, Self-similar solutions for elastohydrodynamic cavity flow, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1819) (1985) 289-313.
[13] J.R. Lister, Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors, J. Fluid Mech, 210 (1990) 263-280.
[14] R. Carbonell, J. Desroches, E. Detournay, A comparison between a semi-analytical and a numerical solution of a two-dimensional hydraulic fracture, International journal of solids and structures, 36(31) (1999) 4869-4888.
[15] A. Savitski, E. Detournay, Propagation of a pennyshaped fluid-driven fracture in an impermeable rock: asymptotic solutions, International journal of solids and structures, 39(26) (2002) 6311-6337.
[16] D.I. Garagash, E. Detournay, Plane-strain propagation of a fluid-driven fracture: small toughness solution, Journal of Applied Mechanics, 72 (2005) 916.
[17] D. Garagash, E. Detournay, Viscosity-dominated regime of a fluid-driven fracture in an elastic medium, in: IUTAM Symposium on Analytical and Computational Fracture Mechanics of NonHomogeneous Materials, Springer, 2002, pp. 25-29.
[18] D. Garagash, E. Detournay, An analysis of the influence of the pressurization rate on the borehole breakdown pressure, International journal of solids and structures, 34(24) (1997) 3099-3118.
[19] J.I. Adachi, Fluid-driven fracture in permeable rock, University of Minnesota, 2001.
[20] J. Adachi, E. Detournay, Self similar solution of a plane strain fracture driven by a power law fluid, International Journal for Numerical and Analytical Methods in Geomechanics, 26(6) (2002) 579-604.
[21] J.I. Adachi, E. Detournay, Plane strain propagation of a hydraulic fracture in a permeable rock, Engineering Fracture Mechanics, 75(16) (2008) 4666-4694.
[22] P.A. Charlez, Rock mechanics: petroleum applications, Editions Technip, 1997.
[23] D. Mendelsohn, A review of hydraulic fracture modeling-part I: general concepts, 2D models, motivation for 3D modeling, Journal of energy resources technology, 106(3) (1984) 369-376.
[24] P. Valko, M. Economides, Hydraulic Fracturing Mechanics, in, John Wiley and Sons, New York, USA, .5991
[25] A. A s g a r i, A. G o l s h a n i, H ydraulic Fracture Propagation in Impermeable Elastic Rock With Large Toughness: Considering Fluid Inertia Parameter Sharif Journal of Civil Engineering, 31.2(3.2) (2015) 23-29.
[26] A. A s g a r i, A. G o l s h a n i, A. L a k i r o u h a n i, Hydraulic Fracture Propagation in Brittle Rock: C onsidering Interaction Term Between Fluid Inertia and Viscosity Parameters, Sharif Journal of Civil Engineering, 32.2(2.1) (2016) 59-66.
[27] A. A s g a r i, A. G o l s h a n i, Mathematical Modeling of Hydraulic Fracture Propagation in Elastic Medium: Viscosity-Toughness-Dominated, Sharif Journal of Civil Engineering, (Accepted In 2017).
[28] S. Khristianovic, Y. Zheltov, Formation of vertical fractures by means of highly viscous fluids, in: Proc. 4th world petroleum congress, Rome, 1955, pp. 579586.
[29] G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, Journal of Applied Mathematics and Mechanics, 23(3) (1959) 622-636.
[30] T. Perkins, L. Kern, Widths of hydraulic fractures, Journal of Petroleum Technology, 13(09) (1961) 937949.
[31] J. Geertsma, F. De Klerk, A rapid method of predicting width and extent of hydraulically induced fractures, Journal of Petroleum Technology, 21(12) (1969) 1571-1581.
[32] R. Nordgren, Propagation of a vertical hydraulic fracture, Society of Petroleum Engineers Journal, 12(04) (1972) 306-314.
[33] J. Geertsma, R. Haafkens, A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures, Journal of energy resources technology, 101(1) (1979) 8-19.
[34] J. Geertsma, Two-dimensional fracture propagation models, in: Recent Advances in Hydraulic Fracturing, SPE Richardson, TX, 1989, pp. 81-94.
[35] K.B. Naceur, M. Economides, Production from naturally fissured reservoirs intercepted by a vertical hydraulic fracture, SPE formation evaluation, 4(04) (1989) 550-558.
[36] M.G. Mack, N.R. Warpinski, Mechanics of hydraulic fracturing, Reservoir stimulation, (2000) 6-1.
[37] M. Biot, L. Masse, W. Medlin, A two-dimensional theory of fracture propagation, SPE Production Engineering, 1(01) (1986) 17-30.
[38] R. Nilson, Similarity solutions for wedge-shaped hydraulic fractures driven into a permeable medium by a constant inlet pressure, International Journal for Numerical and Analytical Methods in Geomechanics, 12(5) (1988) 477-495.
[39] R.S. Carbonell, Self-similar solution of a fluid-driven fracture in a zero toughness elastic solid, Proc .Roy. Soc. London. Ser, A submitted for publication, 1996.
[40] J. Desroches, E. Detournay, B. Lenoach, P. Papanastasiou, J. Pearson, M. Thiercelin, A. Cheng,
The crack tip region in hydraulic fracturing, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1994, pp. 39-48.
[41] N. Huang, A. Szewczyk, Y. Li, Self-similar solution in problems of hydraulic fracturing, Journal of Applied Mechanics, 57 (1990) 877.
[42] D. Garagash, E. Detournay, The tip region of a fluiddriven fracture in an elastic medium, Journal of Applied Mechanics, 67(1) (2000) 183-192.
[43] G. Batchelor, An Introduction to Fluid Dynamics Cambridge Univ, Press, Bentley House, London, (1967).
[44] E.D. Dmitry Garagash, Similarity solution of a semiinfinite fluid-driven fracture in a linear elastic solid, Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy, .292-582 )8991( )5(623
[45] D. Garagash, Hydraulic fracture propagation in elastic rock with large toughness, in: 4th North American Rock Mechanics Symposium, American Rock Mechanics Association, 2000.
[46] D. Garagash, Transient solution for a plane-strain fracture driven by a shear-thinning, power-law fluid, International Journal for Numerical and Analytical Methods in Geomechanics, 30(14) (2006) 1439-1475.
[47] A.P. Bunger, E. Detournay, R.G. Jeffrey, Crack tip behavior in near-surface fluid-driven fracture experiments, Comptes Rendus Mecanique, 333(4) (2005, c) 299-304.
[48] D. Garagash, E. Detournay, Erratum:”Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution [Journal of Applied Mechanics, 2005, 72 (6), pp. 916-928], Journal of Applied Mechanics, 74(4) (2007) 832-832.
[49] R.A. Shapiro, The dynamics and thermodynamics of compressible fluid flow, New York: Ronald Press, 2(1) (1954).
[50] I.N. Sneddon, M. Lowengrub, P. Mathematician, Crack problems in the classical theory of elasticity, Wiley New York, 1969.
[51] J.R. Rice, Mathematical analysis in the mechanics of fracture, Fracture: an advanced treatise, 2 (1968) 191-311.
[52] A.P. Bunger, R.G. Jeffrey, E. Detournay, Toughnessdominated near-surface hydraulic fracture experiments, in: Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS), American Rock Mechanics Association, 2004.
[53] D.I. Garagash, Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution, International journal of solids and structures, 43(1819) (2006) 5811-5835.
[54] M.D. Van Dyke, Perturbation methods in fluid dynamics, Stanford: Parabolic Press, 1975.