مطالعه آزمایشگاهی و تئوریک پارامترهای موثر بر رفتار کمانشی سیستم مهاربندی کشویی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

چکیده

مطالعه های انجام گرفته بر روی جذب انرژی مهاربند ضربدری نشان می‌دهد که وقوع کمانش در این سیستم مهاربندی، شکل‌پذیری سیستم را به شدت تحت تاثیر خود قرار داده و مانع از عملکرد مطلوب آن می‌گردد. از این رو حذف پدیده کمانش می‌تواند کمک شایانی را در بهبود رفتار لرزهای مهاربندهای تحت اثر نیروی محوری فشاری ایفا نماید. سیستم مهاربندی کشویی در این راستا پیشنهاد و ارائه شده است. این سیستم مهاربندی از سه ورق موازی تشکیل شده است که توسط تعدادی ورق موازی یکدیگر که عمود بر ورق‌های اصلی در سیستم قرار گرفته‌اند و وظیفه جذب انرژی را در سیستم به عهده دارند، به هم متصل شده‌اند. در واقع ورق‌های موازی دارای سختی و مقاومت لازم برای انتقال نیرو به ورق‌های عمود بر آنها برای جذب انرژی بوده و خود در حالت الاستیک باقی می‌مانند. مزیت اصلی این سیستم مهاربندی نسبت به سایر سیستم‌های مهاربندی از بین بردن اثرات مخرب پدیده کمانش است. حرکت کشویی رفت و برگشتی عامل اصلی استهلاک انرژی در این سیستم مهاربندی محسوب می‌گردد. در این مقاله ضمن تشریح آزمایش‌های انجام گرفته، روابطی برای محاسبه مقاومت کمانشی این سیستم مهاربندی پیشنهاد گردیده است. نتایج بررسی‌ها نشان می‌دهد که مقاومت کمانشی سیستم، به ترتیب در حدود 3درصد بیشتر و 17درصد کمتر از مقاومت نهایی قابل تحمل سیستم در آزمایش‌های اول و دوم می‌باشد. به این ترتیب برای جلوگیری از وقوع کمانش در این سیستم مهاربندی، اجزای مهاربندی می‌بایست به گونه‌ای طراحی شوند که مقاومت کمانشی ورق‌های موازی، بیشتر از مقاومت نهایی قابل تحمل سیستم گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Theoretical and Experimental Study of Parameters Influencing the Buckling Behavior of the Drawer Bracing System

نویسندگان [English]

  • B. Payandehjoo
  • S. Sabouri-Ghomi
Department of Civil Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran
چکیده [English]

The researches show that the buckling of braced frame, remarkably decrease the ductility and energy absorption of the system which lead to use an innovative system called “Drawer Bracing System (DBS)”. This innovative system improve the seismic performance of the system through buckling elimination. The Drawer Bracing System (DBS) is a passive energy dissipation device made up of three parallel plates that are connected by some plates which are located at a right angle to the parallel plates and undergo minor axis bending. Energy dissipated through the inelastic behavior of these plates. The parallel plates are designed to remain elastic and to prepare the required strength and stiffness to transfer the load to the energy dissipating component of the system. In contrast to other bracing systems, removing destructive effects of buckling phenomenon is the main advantage of this system. The energy is dissipated with the use of sliding movement of its components. In this paper, the tests are carried out by the authors explain. Besides this, analytical investigation is made and the parameters which affect the buckling behavior of the system are evaluated. The results show that the buckling strength of the system is 3 percent higher and 17 percent lower than the ultimate strength of DBS in tests 1 and 2, respectively. Thus, to prevent the occurrence of buckling in the system, the buckling strength of the parallel plates should be selected larger than the ultimate strength of the system with keeping it safe margin.

کلیدواژه‌ها [English]

  • Drawer Bracing System
  • Buckling
  • Quasi-static Experiment
  • Ductility
  • cyclic behavior
[1] J.M. Goggins, B.M. Broderick, A.Y. Elghazouli, A.S. Lucas, Behavior of Tubular Steel Members under Cyclic Axial Loading, Journal of Constructional Steel Research, (2006) 62(1-2): 121–131.
[2] B. Shaback, T. Brown, Behavior of Square Hollow Structural Steel Braces with End Connections under Reversed Cyclic Axial Loading, Canadian Journal of Civil Engineering, (2003) 30(4): 745–753.
[3] M. Elchalakani, X.L. Zhao, R. Grzebieta, Tests of Cold Formed Circular Tubular Braces under Cyclic Axial Loading, ASCE Journal of Structural Engineering, (2003) 129(4): 507–514.
[4] M. Boutros, Cyclic Behavior of Partly Plastic Pinned Circular Tubes, II: Testing and Verification of the Model. Thin-Walled Structures, (1999) 33(1): 69–82.
[5] M. Wakabayashi, Design of Earthquake-resistant Buildings, New York: McGraw Hill (1986).
[6] A. Astaneh-Asl, S.C. Goel, Cyclic IN-Plane Buckling of Double Angle Bracing, ASCE Journal of Structural Engineering, (1984) 110(9): 2036–2055.
[7] R.G. Black, W.A. Wenger, E.P. Popov, Inelastic Buckling of Steel Struts Under Cyclic Load Reversal, Berkeley, University of California, Earthquake Engineering Research Center, California (1980).
[8] A.K. Zayas, S.A. Mahin, Popov EP., Cyclic Inelastic Behavior of Steel Offshore Structures, Univ. of California, Earthquake Engineering Research Center, Berkeley, California (1980).
[9] A.K. Jain, S.C. Goel, Hysteresis Models for Steel Members Subjected to Cyclic Buckling or Cyclic End Moments and Buckling, University of Michigan, Ann Arbor, Mich (1978).
[10] D.R. Sherman, H. Erzurumlu, Ultimate Capacity of Tubular Beam-columns, National Structural Engineering Conference, ASCE (1976).
[11] J. Dewolf, J. Pelliccione, Cross-bracing Design. J Struct Div, ASCE, (1979) 105(7): 1379–1391.
[12] A.A. El-Tayem, S.C. Goel, (First Quarter). Effective Length Factor for the Design of X-bracing Systems, AISC Engineering Journal, (1976) 41–45.
[13] S. Kitipornchai, D. Finch, Stiffness Requirements for Cross Bracing, J Struct Eng, ASCE, (1976) 112(12): 2702–2707.
[14] S. Stoman, Stability Criteria for X-bracing System, J Eng. Mech., ASCE, (1988) 114(8): 1426–1434.
[15] S. Stoman, Effective Length Spectra for Cross Bracing, J Struct. Eng., ASCE, (1989) 115(12): 3112–3122. No.3.
[16] D. Wang, A. Boresi, Theoretical Study of Stability Ncriteria for X-bracing System, J Eng Mech., ASCE, (1992) 118(7): 1357–1364.
[17] P. Ebadi, S. Sabouri-Ghomi, Effects of Steel Grade on Seismic Benefits of X-Braced Frames, 14th European Conference on Earthquake Engineering, Ohrid - Macedonia, Aug. 30 – Sep. 3, (2010).
[18] A. Davaran, Effective Length Factor for Discontinuous X-Bracing Systems, Journal of Engineering Mechanics, (2001) 127(2): 106–112.
[19] D. Jurokovski, M. Petkovski, Z. Rakicevic, Energy absorbing in regular and composite steel frame structures, Engineering Structures, Vol.17(5), June (1995) 319-333.
[20] D. Jurokovski, B. Simenov, V. Trajovski, Cyclic tests of composite steel frames with energy absorbing elements, Proceeding of International Conference on steel and  Aluminium structures, Vol. composite steel structures, Cardiff, UK, 8-10 July (1987) 154-161, Elsevier Pub.
[21] V. Ciampi, S.A. Ferreti, Energy dissipation in buildings using special bracing systems, Proceeding of 9th European Conference on Earthquake Engineering, Vol.3, Moscow, (1990) 9-18.
[22] V. Ciampi, S.A. Ferreti, Energy dissipation in buildings using special bracing systems, Proceeding of 10th Earthquake Conf, (1990).
[23] A. Vulcano, Design of damped steel bracing systems for seismic control of framed structures, 10th European Conference on Earthquake Engineering Duma(ed), (1995) 1567-1572.
[24] S. Sabouri-Ghomi, A. Roufegarinejad, Nonlinear Behavior of Yielding Damped Braced Frame, The Structural Design of Tall and Special Buildings, (2004) 14: 37-45.
[25] M. Saberi, Investigation of Modification factor of Yielding Damped Braced Frame with Plate in Core, M.S. Thesis, Khaje Nasir Toosi University of Technology, Department of Civil and Environmental Engineering, Tehran-Iran, (2000) (In Persian)
[26] S. Sabouri-Ghomi, M. Saneipour, Hysteresis Behavior of Central Yielding Damped Braced Frames with Structural and Easy-going-steel, 3rd national congress on Civil Engineering, Tabriz University, Tabriz-Iran, May 1-3 (2007a).
[27] S. Sabouri-Ghomi, M. Saneipour, Nonlinear Behavior of Central Yielding Damped Braced Frames with Different Percentage of Opening by Using Structural and Easy-going-steel, 5th International Conference on Seismology and Earthquake En31gineering, 328 earthquake engineering and engineering vibration vol.11. Tehran-Iran, May (2007b).
[28] B. Payandehjoo, S. Sabouri-Ghomi, P. Ebadi, Seismic Behavior of X-Shaped Drawer Bracing System (DBS) and X-Braced Frames with Heavy Central Core, Journal of Earthquake and Tsunami, p.1650004, (2016).
[29] M.G. Gray, C. Christopoulos, J.A. Packer, Case Steel Yielding Fuse for Concentrically Braced Frames, Proceeding of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, Toronto, Canada, 25-29 July (2010).
[30] M.G. Gray, C. Christopoulos, J.A. Packer, Full-Scale Testing of the Cast Steel Yielding Brace System, Proceeding of the 7th International Conference STESSA, Santiago, Chile, 9-11 January (2012).
[31] ATC-24., Guidelines for cyclic seismic testing of components of steel structures. Redwood City, CA, USA, Applied Technology Council (1992).
[32] K.C. Tsai, J.W. Li, C.P. Hong, H.W. Chen, Y.F. Su, Welded Steel Triangular-Plate Device for Seismic Energy Dissipation, ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, San Francisco, CA, (1993) 687-698.
[33] S. Garivani, A.A. Aghakoochak, S.H. Shahbeyk., Introducing Comb-Teeth Yielding Metallic Dampers, Modares Civil Engineering journal, (2015) 199-211 (In Persian)
[34] AISC. American Institute of Steel Construction, ANSI/AISC 360-10, Specification for Structural Steel Building, Chicago (2010).
[35] http://www.wynjade.com/aiscfall11/webinarCEU
[36] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, Second Edition, McGraw-Hill, New York (1961).
[37] B. Payandehjoo, An Improvement of Seismic Performance of Yielding Damped Braced Core, Ph.D. Thesis, Khaje Nasir Toosi University of Technology, Department of Civil and Environmental Engineering, Tehran-Iran (2015) (In Persian)