رفتار لرزه ای مبتنی بر عملکرد خطوط لوله فولادی مدفون پیوسته تحت زلزله‌های حوزه نزدیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، واحد کنگان، دانشگاه آزاد اسلامی، کنگان، ایران

چکیده

معیارهای شدت زمین‌لرزه برای کمی‌سازی قدرت زلزله‌ها و ارزیابی پاسخ سازه‌ها به کار می‌روند. از آنجایی که این معیارهای شدت به عنوان رابطی بین نیاز لرزه‌ای و تحلیل خطر لرزه‌ای عمل می‌کنند، نقشی اساسی در مهندسی زلزله مبتنی بر عملکرد دارند. تحقیقات زیادی در زمینه تعیین معیار شدت بهینه برحسب کارایی و کفایت انجام شده است. اکثر این مطالعات بر سازه‌های متداول مثل ساختمان‌ها و پل‌ها متمرکز است و تعداد کمی از آنها در مورد خطوط لوله مدفون است. در مطالعه حاضر معیارهای شدت بهینه برای پیش‌بینی نیاز لرزه‌ای خطوط لوله فولادی مدفون پیوسته تحت زلزله‌های پالس‌گونه حوزه نزدیک مورد بررسی قرار گرفته است. سه لوله فولادی مدفون با قطر به ضخامت (D/t) ، عمق دفن به قطر (H/D) و مقاومت مصالح و نیز مشخصات خاک مختلف تحت تحلیل دینامیکی فزآینده با استفاده از بیست رکورد زلزله قرار گرفتند. از روش اجزاء محدود برای مدل سازی استفاده شده که در طی آن برای مدلسازی خاک از فنرها و میراگرهای معادل و برای مدلسازی لوله از المان پوسته استفاده شده است. کرنش فشاری محوری حداکثر در بحرانی ترین مقطع لوله به عنوان پارامتر نیاز مهندسی برای لوله فولادی مدفون پیوسته انتخاب شده و سپس شانزده معیار شدت زمین لرزه بالقوه در نظر گرفته شده‌اند. در نهایت نتیجه گرفته شد که VSI[w1(PGD+RMSd)]^0.5 و سپس حداکثر سرعت پایدار (SMV) معیارهای شدت مناسب برای مطالعه خطوط لوله فولادی مدفونی که در معرض زلزله های پالس گونه حوزه نزدیک قرار دارند، در چهارچوب مهندسی زلزله عمل کردی می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance-Based Seismic Response of Continues Buried Steel Pipelines Under Near-Field Ground Motion Effects

نویسندگان [English]

  • Alireza Kiani 1
  • Mehdi Torabi 2
  • S. Mohammad Mirhosseini 1
1 Civil Eng. Dept., Faculty Engineering, Islamic Azad University, Arak Branch, Arak, Iran.
2 Civil Eng. Dept., Faculty Engineering, Islamic Azad University, Kangan Branch, Kangan, Iran
چکیده [English]

 Performance-Based Earthquake Engineering (PBEE) attempts to improve seismic risk through assessment and design methods that are more informative than current approaches. However, little work has been performed investigating the seismic response of buried steel pipelines within a performance-based framework. In this paper the seismic response of buried steel pipelines was studied in a performance-based context. Multiple nonlinear dynamic analyses of three buried steel pipes with different diameter to thickness and burial depth to diameter ratios, steel grade and various soil characteristics carried out using an ensemble of near-field ground motion records were scaled to various intensities to capture the behavior of buried pipeline in the range of elastic response to dynamic instability. Peak axial compressive strain in critical section of the pipe was considered as engineering demand parameter (EDP) of pipelines. Several ground motion intensity measures (IMs) are considered to investigate their correlation with EDP. Using the regression analysis in logarithmic space, the efficiency and sufficiency of investigated IMs are studied. Among the models investigated in this study, it was seen that a combined IM, PGV and SMV were the most sufficient IMS. For buried steel pipelines investigated in this study, it was concluded that PGD is the most sufficient IM for near-field ground motions. It was seen that the combined IM followed by SMV were the optimal IM for buried steel pipelines under near-field ground motions based on both efficiency and sufficiency conceptions.

کلیدواژه‌ها [English]

  • Continues buried steel pipeline
  • Near-field ground motion
  • Incremental dynamic analysis
  • Performance-based
  • earthquake engineering
  • Intensity measure
[1]  N. Luco, P. Mai, C. Cornell, G. Beroza, Probabilistic seismic demand analysis, SMRF connection fractures, and near-source effects, (2002).
[2]  N. Shome, C.A. Cornell, P. Bazzurro, J.E. Carballo, Earthquakes, records, and nonlinear responses, Earthquake Spectra, 14(3) (1998) 469-500.
[3]  N. Shome, Probabilistic seismic demand analysis of nonlinear structures, 1999.
[4]  N. Luco, C.A. Cornell, Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions, Earthquake Spectra, 23(2) (2007) 357-392.
[5]  D. Vamvatsikos, C.A. Cornell, Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information, Earthquake engineering & structural dynamics, 34(13) (2005) 1573-1600.
[6]  P. Tothong, N. Luco, Probabilistic seismic demand analysis using advanced ground motion intensity measures, Earthquake Engineering and Structural Dynamics, 36(13) (2007) 1837.
[7]  S.S. Mehanny, A broad-range power-law form scalar-based seismic intensity measure, Engineering Structures, 31(7) (2009) 1354-1368.
[8]  M. Bianchini,  P.  Diotallevi,  J.  Baker,  Prediction  of inelastic  structural  response  using  an  average  of spectral accelerations, in: Proc. of the 10th International Conference on Structural Safety and Reliability (ICOSSAR09), Osaka, Japan, 2009, pp. 13-17.
[9]  F. Mollaioli, A. Lucchini, Y. Cheng, G. Monti, Intensity measures for the seismic response prediction of base-isolated buildings, Bulletin of Earthquake Engineering, 11(5) (2013) 1841-1866.
[10]  M. De Biasio, S. Grange, F. Dufour, F. Allain, Petre-Lazar, A simple and efficient intensity measure to account for nonlinear structural behavior, Earthquake Spectra, 30(4) (2014) 1403-1426.
[11]  B. Mackie K. Stojadinovic, Seismic Demands for Performance-Based Design of Bridges, University of California, Berkeley, CA.
[12]  J.E.  Padgett,  R.  DesRoches,  Methodology  for   the development of analytical fragility curves for retrofitted bridges, Earthquake Engineering & Structural Dynamics, 37(8) (2008) 1157-1174.
[13]  B.A. Bradley, M. Cubrinovski, R.P. Dhakal, G.A. MacRae, Intensity measures for the seismic response of pile foundations, Soil Dynamics and Earthquake Engineering, 29(6) (2009) 1046-1058.
[14]  H. Shakib, V. Jahangiri, Intensity measures for the assessment of the seismic response of buried steel pipelines, Bulletin of Earthquake Engineering, 14(4) (2016) 1265-1284.
[15]  C. Davis, J. Bardet, Seismic analysis of large-diameter flexible underground pipes, Journal of geotechnical and geoenvironmental engineering, 124(10) (1998) 1005-1015.
[16]  C.A. Cornell, F. Jalayer, R.O. Hamburger, D.A. Foutch, Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines, Journal of Structural Engineering, 128(4) (2002) 526-533.
[17]  H.-S.A. Alfredo, H. Wilson, Probability concepts in engineering planning and design, John Wily and Sons, (1975).
[18]  A.L. Alliance, Guidelines for the design of buried steel pipe, in, American Society of Civil Engineers, 2001.
[19]  A. Hindy, M. Novak, Earthquake response of underground pipelines, Earthquake Engineering & Structural Dynamics, 7(5) (1979) 451-476.
[20]  A.-w. Liu, Y.-x. Hu, F.-x. Zhao, X.-j. Li, S. Takada, L. Zhao, An equivalent-boundary method for the shell analysis of buried pipelines under fault movement, Acta Seismologica Sinica, 17(1) (2004) 150-156.
[21]  M. Bruneau, C.-M. Uang, S.R. Sabelli, Ductile design of steel structures, McGraw Hill Professional, 2011.
[22]  A.U.s.M.R. ANSYS, 5.5, ANSYS, Inc., Canonsburg, Pennsylvania, (1998).
[23]  V. Jahangiri, H. Shakib,  Seismic  risk  assessment of buried steel gas pipelines under seismic wave propagation based on fragility analysis, Bulletin of Earthquake Engineering, 16(3) (2018) 1571-1605.
[24]  SigmaPlot., SigmaPlot for Windows. Ver. 10, in, Systat Software Point Richmond, CA, 2006.