بررسی وابستگی عوامل هیدرولیکی موثر بر میزان مکش ناگهانی آلودگی به خطوط انتقال در شرایط گذرا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد عمران، مهندسی رودخانه، دانشگاه صنعتی جندی شاپور، دزفول، ایران

2 استادیار گروه عمران دانشگاه صنعتی جندی‌شاپور دزفول،خوزستان

چکیده

مکش ناگهانی آلودگی بر اثر جریان گذرا مکانیزم پراهمیتی است، که ممکن است منجر به بروز زوال کیفیت آب آشامیدنی شود. موج فشار منفی ضربه‌قوچ در لحظاتی که به نقاط آسیب سازهای همچون نشت برسد، در صورت غلبه برفشار اطراف محل نشت، منجر به مکش ناگهانی آلودگی به جریان درون لوله می‌شود. در این تحقیق با مدل‌سازی عددی و ریاضی یک سیستم مخزن-لوله-شیر با نشت به بررسی اندرکنش عوامل هیدرولیکی بر فشارهای وارده به سیستم و متعاقبا حجم آلودگی وارد شده به خطوط انتقال، حین وقوع ضربه‌قوچ، پرداخته شده است. در این پژوهش برای مدل‌سازی جریان گذرا از روش اولری مشخصه‌ها استفاده شد. کل حجم آلودگی ورودی از محل نشت که برگرفته از حل لاگرانژی معادله انتقال آلودگی است، به عنوان مالک مقایسه برای حالت‌های گوناگون اتخاذ شده است. این پژوهش در 72 حالت مختلف به بررسی مکش ناگهانی آلودگی پرداخته است. این حاالت مختلف در برگیرنده دو خط انتقال (کوتاه و بلند)، سه محل مختلف نشت، سه سرعت متفاوت برای سیال درون لوله، دو قطر نشت و دو جنس لوله (الاستیک و ویسکوالاستیک) می‌باشد. نتایج حاکی از آن است که مقدار آلودگی وارد شده، به وضوح در لوله‌های ویسکوالاستیک کمتر از لوله‌های الاستیک می‌باشد، به ویژه زمانی که طول لوله زیاد باشد. نرخ ورود آلودگی در لوله ویسکوالاستیک به نسبت لوله‌های الاستیک، به ترتیب برابر 0/027 و 0/496 در لوله 2300متری و 540 متری می باشد. ناحیه بحرانی ورود آلودگی برای نشت های کوچک در نزدیکی شیر واقع شده است، لیکن تعیین این ناحیه برای نشت های بزرگ به دلیل تاثیر بازتاب امواج فشاری از شیر، مخزن و نشت، پیچیده می‌باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interdependence of Hydraulic Parameters in Transient Induced Contaminant Intrusion in a Pipeline

نویسندگان [English]

  • Milad Payesteh 1
  • alireza keramat 2
1 Msc graduated in Civil Engineering, Jundi-Shapur University of Technology, Dezful, Iran
2 Faculty of Civil Engineering, Jondi Shapur University of Technology, Dezful, Iran
چکیده [English]

Contaminant intrusion during transients in pipelines is a remarkable mechanism which usually leads to declining the quality of the contained water. When rarefaction waves of water hammer reach a leakage, the negative pressure can suddenly suck pollution from surrounding area of leakage to the main pipe flow, thus deteriorating water quality. In this research, numerical and mathematical modeling of a reservoir-pipe-valve system with a leakage has been used to study the effect of hydraulic situations on the volume of contamination intruded into the pipeline during a waterhammer. Eulerian method of characteristics was employed to model the transient flow. The total Volume of Contaminant Parcel (VCPt) penetrating through the leakage is evaluated by Lagrangian solution of the advection equation and then it is established the criteria to compare various transient scenarios and the interconnection between key parameters. In order to elucidate this phenomenon in real pipe systems, the amount of contaminant intrusion is estimated for 72 different cases. They include two lengths of pipeline (say short and long), three different leakage locations, three different fluid velocities, two leak diameters and two pipeline materials (elastic and viscoelastic). The results indicate that the amount of intrusion in viscoelastic pipes is clearly less than that in elastic pipes especially in long pipelines: the ratio of intrusion in viscoelastic to elastic pipes on average is 0.027 and 0.496 in 2300m and 540m pipe, respectively. The critical zone of high intrusion risk is placed close to the downstream valve for small leak sizes, nevertheless, it is hard to estimate this zone in case of big leaks due to significant valve-leak-reservoir induced reflection waves.

کلیدواژه‌ها [English]

  • Drinking water quality
  • Waterhammer
  • Advection equation
  • Contaminant intrusion
  • Viscoelastic pipes
  • Leakage
[1]    Grayman, W. M., Rossman, L. A., & Geldreich, E. E. (1999). Water quality. Water distribution systems handbook.
[2]    Lindley, T. R. (2001). A framework to protect water distribution systems against potential intrusions (Doctoral dissertation, University of Cincinnati).
[3]    Mansour Rezaei Fumani, S. (2013). Contaminant intrusion in water distribution systems: Advanced modelling approaches (Doctoral dissertation, University of British Columbia).
[4]    Schuster, C. J., Aramini, J. J., Ellis, A. G., Marshall, B. J., Robertson, W. J., Medeiros, D. T., & Charron, D. F. (2005). Infectious disease outbreaks related to drinking water in Canada, 1974–2001. Canadian Journal of Public Health, 96(4), 254-258.
[5]    Collins, R., Boxall, J., Besner, M. C., Beck, S., & Karney, B. (2010). Intrusion modelling and the effect of ground water conditions. In Water Distribution Systems Analysis 2010 (pp. 594-585).
[6]    Karim, M. R., Abbaszadegan, M., & LeChevallier, M. (2003). Potential for pathogen intrusion during pressure transients. Journal‐American Water Works Association, 95(5), 134-146.
[7]    Thomson, J., & Wang, L. (2009). State of technology review report on condition assessment of ferrous water transmission and distribution systems. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
[8]    Kirmeyer, G. J., Friedman, M., Martel, K., Howie, D., LeChevallier, M., Abbaszadegan, M., ... & Harbour, J. (2001). Pathogen Intrusion into the Distribution System, 254 pp. AWWA and AWWARF, Denver, CO, USA.
[9]    Besner, M. C., Prévost, M., & Regli, S. (2011). Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges. Water research, 45(3), 961-979.
[10] Ruan, F., & McLaughlin, D. (1998). An efficient multivariate random field generator using the fast Fourier transform. Advances in water resources, 21(5), 385-399.
[11] Basha, H. A., & Malaeb, L. N. (2007). Eulerian– Lagrangian method for constituent transport in water distribution networks. Journal of Hydraulic Engineering, 133(10), 1155-1166.
[12] Fernandes, C., & Karney, B. (2004). Modelling the advection equation under water hammer conditions. Urban Water Journal, 1(2), 97-112.
[13] Fox, S., Shepherd, W., Collins, R., & Boxall, J. (2014). Experimental proof of contaminant ingress into a leaking pipe during a transient event. Procedia Engineering, 70, 668-677.
[14] Mansour‐Rezaei, S., & Naser, G. (2013). Contaminant intrusion in water distribution systems: An ingress model. Journal‐American Water Works Association, 105(1), E29-E39.
[15] Jones, S., Shepherd, W., Collins, R., & Boxall, J. (2014). Experimental quantification of intrusion due to transients in distribution systems. Procedia Engineering, 89, 1306-1313.
[16] Fontanazza, C. M., Notaro, V., Puleo, V., Nicolosi, P., & Freni, G. (2015). Contaminant intrusion through leaks in water distribution system: experimental analysis. Procedia Eng, 119, 426-433.
[17] Payasteh M., Keramat A. (2020). Sensitivity Analysis of Hydraulic Parameters on Contaminant Intrusion in Transient Conditions. Amirkabir J. Civil Eng., 51(5).
[18] Covas, D., Stoianov, I., Mano, J. F., Ramos, H., Graham, N., & Maksimovic, C. (2005). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. Journal of Hydraulic Research, 43(1), 56-70.
[19] Chaudhry, M.  H. (2014).   Applied hydraulic transients.
[20] Joukowski, N. E. (1898). Memoirs of the imperial academy society of St. Petersburg. Proceedings of the American Water Works Association, 24, 341-424.
[21] Keramat, A., & Haghighi, A. (2014). Straightforward transient-based approach for the creep function determination in viscoelastic pipes. Journal of Hydraulic Engineering, 140(12), 04014058.
[22] Covas, D. I. C. (2003). Inverse transient analysis for leak detection and calibration of water pipe systems-modelling special dynamic effects (Doctoral dissertation, University of London).