شبیه سازی یک بعدی ضربه قوچ در سیالات غیرنیوتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

2 استادیار گروه عمران دانشگاه صنعتی جندی‌شاپور دزفول،خوزستان

3 سازمان آب و برق خوزستان/ایران

چکیده

برخلاف مطالعه‌های گذشته در جریان های غیرماندگار سیالات غیر نیوتنی که از مدل‌های پیچیده دو بعدی جهت محاسبه گرادیان سرعت استفاده شده است، در این تحقیق مدل‌های یک بعدی جهت محاسبه افت غیرماندگار به کار گرفته شده است که امکان پیاده‌سازی سریع تر و سرعت اجرایی بالاتری دارند. هدف اصلی این تحقیق بررسی پدیده ضربه قوچ در سیالات غیرنیوتنی از نوع توانی law Power ) ) با استفاده از مدل های برونون و زیلک می باشد. جهت محاسبه تنش برشی در رابطه مومنتم از مدل زیلک و برونون و به منظور حل معادلات از روش خطوط مشخصه ها جهت حل سیالات غیرنیوتنی استفاده شده است. مدل برونون بر این اساس حاکم است که تنش برشی دیواره به دلیل تغییر شتاب، متناسب با شتاب سیال تغییر می‌کند. روش زیلک برای محاسبه ضریب اصطکاک غیر ماندگار، مدلی بر اساس انتگرال کانولوشن که به صورت تحلیلی هست را ارائه می‌دهد. برای بدست آوردن گرادیان سرعت سیال توانی در مدل زیلک، از گرادیان سرعت در حالت ماندگار استفاده شده است. در انتها برای حصول اطمینان از صحت آلگوریتم حل، نتایج عددی با نتایج مقالات دیگر مقایسه شده‌اند. نتایج حاصل از مدل‌سازی سیال غیرنیوتنی نشان دهنده تغییراتی قابل توجه در مقادیر فشار می‌باشند. فرمول‌های ارائه شده مشابه مدل‌های دو بعدی می‌توانند این تغییرات را شبیه‌سازی کنند. مطابق انتظار در شرایط جریان ماندگار یکسان، مقدار بیشترین خطا در فشار حداکثر در محل شیر حدود یک درصد نسبت به حالت دو بعدی می‌باشد که با کاهش لزجت سیال مقدار این خطا نزدیک به صفر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

One-Dimensional Simulation of Water Hammer in Non-Newtonian Fluids

نویسندگان [English]

  • alireza khamoshi 1
  • alireza keramat 2
  • ali majd 3
1 Department of Hydraulic Structures, Faculty of Civil Engineering, Jundi shapur university of Technology, Dezful, Iran
2 Faculty of Civil Engineering, Jondi Shapur University of Technology, Dezful, Iran
3 PhD Civil Hydraulics/khozestan/iran
چکیده [English]

Unlike previous studies in Non-Newtonian fluids that use complex two-dimensional models to calculate the velocity gradient in this research, one-dimensional models have been used to calculate Non[1]Newtonian losses that can be implemented faster and have higher execution speeds. The main objective of this research is to study the phenomenon of water hammer in Non-Newtonian fluids of power type (Power Law) using Brunon and Zeilke models. In order to calculate the shear stress in relation to the momentum of the Zeilke and Brunon model, and to solve the equations, the line characteristics of the nonlinear fluid solution have been used. The Brunon model is based on the assumption that the shear stress of the wall changes due to the acceleration of the acceleration, proportional to the acceleration of the fluid. Zilck’s method for calculating the unsteady friction coefficient presents a model based on the analytic integral of convolution. The velocity gradient in the steady state is used to obtain the velocity gradient in the Zeilke model. Finally, numerical results are compared with the results of another research to ensure the accuracy of the solution algorithm. The results of Non-Newtonian fluid modeling show significant changes in pressure values. The proposed formulas, similar to the two-dimensional models, can simulate these changes. As expected in the same continuous flow conditions, the maximum pressure decreases with decreasing viscosity of the fluid. In other words, by decreasing the viscosity of the fluid, the amount of drops across the pipe path will be reduced. According to expectations in the steady flow conditions, the maximum error in the maximum pressure at the valve location is about one percent higher than the two-dimensional state, which, with a decrease in the viscosity of the fluid, causes this error to be close to zero.

کلیدواژه‌ها [English]

  • Water hammer
  • Unsteady friction
  • Zeilke model
  • Brunon model
  • Fluid model of power low
[1]  E.B. Wylie, V.L.A. Streeter, L. Suo, Fluid Transients in Systems, Prentice Hall PTR, (1993).
[2]  M. H. Chaudhry, Applied Hydraulic Transients, Springer New York, (2014).
[3]  A.E. Vardy, J.M.B. Brown, Laminar pipe flow with time-dependent viscosity, Journal of Hydroinform, 13(4) ( 2011) 729–740.
[4]  A. Vardy, J. Brown, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270(1) (2004) 233-257.
[5]  J. Vítkovský  et al. Efficient and accurate calculation of Zielke and Vardy-Brown unsteady friction in pipe transients, in Proceedings of the 9th International Conference on Pressure Surges, (2004).
[6]  J. W. Daily, W. L. Hankey, R. W. Olive, J. M. Jordaan. Resistance Coefficients for Accelerated and Decelerated Flows through Smooth Tubes and Orifices, Trans, ASME, 78 (1956) 1071–1077.
[7]  B. Brunone, U.M. Golia, Greco M. Modelling of fast transients by numerical methods. International meeting on hydraulic transients with column separation, Ninth round table, IAHR, Valencia, (1991).
[8]  G. Pezzinga, Quasi-2D Model for Unsteady Flow in Pipe Networks. Journal of Hydraulic Engineering, .586-676 )9991( )7(521
[9]  B.A. Toms, Some Observation on the Flow of Linear Polymer Solutions Through Straight Tubes at Large {R}eynolds Numbers, (1948).
[10] G.M Oliveira, C.O.R. Negrão, A.T. Franco, Pressure transmission in Bingham fluids compressed within a closed pipe, Journal of Non-Newtonian Fluid Mech, 169–170(0) (2012) 121-125.
[11] F.T. Pinho, J.H. Whitelaw, Flow of non-newtonian fluids in a pipe, Journal of Non-Newtonian Fluid Mech, 34(2) (1990) 129-144.
[12] E.M. Wahba, Non-Newtonian fluid hammer in elastic circular pipes, Shear-thinning and shear-thickening effecs, Journal of Non-Newtonian Fluid Mech, 198(0) (2013) 24-30.
[13] A. Majd, A. Ahmadi, A. Keramat, Investigation of non-Newtonian fluid effects during transient flows in a pipeline, Strojniški vestnik – Journal of Mechanical Engineering, 62 (2016) 105-115.
[14] M. Azhdari, A. Riasi, P. Tazraei, Numerical Study of Non-Newtonian Effects on Fast Transient Flows in Helical Pipes, preprint arXiv, (2017). [15] M. H. Chaudhry, Applied Hydraulic Transients, Springer New York, (2014).
[16]  W. Zeilke, Frequency-dependent friction in transient pipe flow, Journal of Basic Engineer, (1968) 109–115.
[17]  A. Vardy, J. Brown, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270(1) (2004) 233-257.
[18]  M. Ghidaoui, S. Mansour, Efficient Treatment of the Vardy–Brown Unsteady Shear in Pipe Transients, Journal of Hydraulic Engineering, 128(10) (2008) 102-112.
[19]  J. P. Vitkovsky, M. F. Lambert, A. R. Simpson, Advances in unsteady friction modelling in transient pipe flow, Publication No. 39, Suffolk, UK, (2000) 471-498.
[20]  B. Brunone, U.M.Golia, M. Greco, Effects of TwoDimensionality on Pipe Transients Modeling, Journal of Hydraulic Engineering, 121(12) (1995) 906-912.
[21]  A. Vardy, J. Brown, On turbulent, unsteady, smoothpipe flow, Proc, International Conferenceon Pressure Surges and Fluid Transients, (1996) 289-311.
[22]  R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology, Engineering Applications, Elsevier Science, (2011).
[23]  A. Vardy, J. Brown, Transient, turbulent, smooth pipe flow, Journal of  Hydraulic Research, 256 IAHR, 33(4) (1995) 435-456.
[24]  N. OHMI, T. Usui, Pressure and velocity distributions in pulsating turbulent pipe flow,Theoretical treatments, Bulletin JSME, 19 (1976) 307-313.
[25]  A. Bergant, A. R. Simpson, J. Vìtkovsky, Developments in unsteady pipe flow friction modellin Journal of Hydraulic Research, 39(3) (2001) 249-257.
[26]  E.M. Wahba, Runge–Kutta time-stepping schemes with TVD central differencing for the water hammer equations, 52 (5) (2006) 571–590.
[27]  E.L. Holmboe, W.T. Rouleau, The Effect of Viscous Shear on Transients in Liquid Lines, Journal of  Basic Engineering, 89(1) (1967) 174-180.
[28]  M.M.K Khan, friction factor and flow characterisation of non-newtonian fluids Department of Mechanical Engineering, University of Central Queensland Rockhampton Mail Centre, (1992).