کنترل نیمه‌فعال فازی سیستم یک درجه آزاد تحت تحریک ماشین‌های دوار با استفاده از میراگر جرمی تنظیم‌شونده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

2 دانشگاه تهران

چکیده

حرکات ارتعاشی دستگاه‌های مکانیکی می‌تواند اثرات نامطلوبی در عملکرد آنها و سازه‌هایی که این دستگاه‌ها روی آن قرار دارند، داشته باشند. با افزایش سرعت زاویه‌ای این دستگاه‌ها و نزدیک شدن آن به فرکانس طبیعی سازه، می‌تواند باعث بروز پدیده‌هایی همچون تشدید، شبه تشدید، ضربان و شبه‌ضربان شود. در تحقیق حاضر برای کاهش پاسخ چنین پدیده‌های احتمالی، از میراگرهای جرمی به‌صورت غیرفعال و نیمه‌فعال استفاده شده است. پارامتر نسبت میرایی میراگر جرمی نیمه‌فعال از طریق دو استراتژی مختلف سیستم استنتاج فازی و الگوریتم  ground-hook ،بر اساس پاسخ سازه تخمین زده می‌شود. نتایج این بررسی نشان می‌دهد که استفاده از میراگر جرمی نیمه‌فعال، می‌تواند عملکرد سیستم غیرفعال را در کاهش جابجایی سیستم، 32 %تا 47 %تحت پدیده‌های مختلف، بهبود دهد. استفاده از سیستم استنتاج فازی در تعیین نسبت میرایی میراگر جرمی می‌تواند 1/5 %تا 6/2 %نسبت به الگوریتم ground-hood پاسخ جابجایی سیستم را کاهش دهد. تحلیل‌های انجام شده برای محدودهای از فرکانس‌های بهینه، نشان می‌دهد که سیستم فازی حساست کمتری نسبت به عدم تنظیم بهینه فرکانس میراگر جرمی دارد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Semi-active fuzzy control of SDOF systems under loading of rotary machines by tuned mass dampers

نویسندگان [English]

  • Meysam Ramezani 1
  • Akbar Bathaei 2
  • S. Mehdi Zahrai 2
1 international institute of earthquake engineering and seismology
2 Earthquake Engineering Department, University of Tehran, Tehran, Iran
چکیده [English]

Dynamic vibrations of mechanical equipment might undesirably affect their performance and the structures on which they are installed. The gradual increase in angular velocity of such equipment and getting close to natural frequency of the structure leads to some phenomena such as resonance, pseudo resonance, beating and pseudo beating phenomenon. Therefore, dynamic responses of these structures should be reduced. Tuned mass dampers (TMDs) as one of the most reliable and simplest instruments to achieve this goal have been attracted by experts. The inertia force makes this kind of dampers vibrate in opposite direction and cause reduction in response of structure. Within seconds, by dedicating various parameters for TMD, their great performance can be augmented. There are lots of different strategies to assign these variable parameters. In this study, semi-active control approaches have been used to decrease the response of a single degree of freedom structure subjected to the above[1]mentioned probabilistic phenomena. In addition, some existing optimum functions have been applied to determine the TMD’s frequency and damping parameters. These parameters of semi-active TMD are predicted utilizing two different strategies: the fuzzy logic system and ground-hook algorithm. The logic of making alteration to damping ratio is based on regaining the equilibrium of structure as it vibrates. Copping with different phenomena, results of this investigation indicate the advantages of using semi-active tuned mass damper to dramatically decrease the system displacement by 32 to 47 percent. Moreover, using fuzzy logic systems to set damping parameters of TMD, results in 1.5 to 6.2 percent displacement reduction in comparison with Ground-Hook algorithm. The conducted analysis for a wide range of optimal frequencies illustrate that fuzzy logic system is less sensitive to mistuning of TMD’s optimal frequency

کلیدواژه‌ها [English]

  • semi-active tuned mass damper
  • fuzzy logic and Ground-Hook algorithm
  • rotary machines
  • Resonance and Pseudo Resonance
  • Beating and Pseudo Beating
[1] M.J. Griffin, Handbook of human vibration, Academic  press, 2012.
[2]  L.L. Chung, L.Y. Wu, C.S.W. Yang, K.H. Lien, M.C. Lin, H.H. Huang, Optimal design formulas for viscous tuned mass dampers in wind‐excited structures, Structural Control and Health Monitoring, 20(3) (2013) 320-336.
[3]  M.-Y. Liu, W.-L. Chiang, J.-H. Hwang, C.-R. Chu, Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction, Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7) (2008) 1092-1102.
[4]  M. Ramezani, A. Bathaei, S.M. Zahrai, Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings, SMART STRUCTURES AND SYSTEMS, 20(1) (2017) 61-74.
[5]  J. Ormondroyd, The Theory of the Dynamic Vibration Absorber, Trans. ASME, Journal of Applied Mechanics, 50(7) (1928).
[6]  N. Hoang, P. Warnitchai, Design of multiple tuned mass dampers by using a numerical optimizer, Earthquake engineering & structural dynamics, 34(2) (2005) 125-144.
[7]  C.-L. Lee, Y.-T. Chen, L.-L. Chung, Y.-P. Wang, Optimal design theories and applications of tuned mass dampers, Engineering structures, 28(1) (2006) .35-34
[8]  C. Li, W. Qu, Optimum properties of multiple tuned mass dampers for reduction of translational and torsional response of structures subject to ground acceleration, Engineering Structures, 28(4) (2006) 472-494.
[9]  Y. Daniel, O. Lavan, R. Levy, Multiple-tuned mass dampers for multimodal control of pedestrian bridges, Journal of Structural Engineering, 138(9) (2011) 11731178.
[10] K.K. Wong, J. Johnson, Seismic energy dissipation of inelastic structures with multiple tuned mass dampers, Journal of engineering mechanics, 135(4) (2009) 265-275.
[11] H. Zuo, K. Bi, H. Hao, Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards, Engineering Structures, 141 (2017) 303-315.
[12]  S. Bakre, R. Jangid, Optimum parameters of tuned mass damper for damped main system, Structural Control and Health Monitoring, 14(3) (2007) 448-470.
[13]  G. Bekdaş, S.M. Nigdeli, Estimating optimum parameters of tuned mass dampers using harmony search, Engineering Structures, 33(9) (2011) 2716-2723.
[14] G. Bekdaş, S.M. Nigdeli, Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction, Soil Dynamics and Earthquake Engineering, 92 (2017) 443-461.
[15] G. Bekdaş, S.M. Nigdeli, X.-S. Yang, A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures, Engineering Structures, 159 (2018) 89-98.
[16] A. Farshidianfar, S. Soheili, Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction, Soil Dynamics and Earthquake Engineering, 51 (2013) 14-22.
[17]  A. Leung, H. Zhang, Particle swarm optimization of tuned mass dampers, Engineering Structures, 31(3) (2009) 715-728.
[18]  E. Nazarimofrad, S.M. Zahrai, Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction, Soil Dynamics and Earthquake Engineering,  (2017).
[19] F. Casciati, G. Magonette, F. Marazzi, Technology of semiactive devices and applications in vibration mitigation, John Wiley & Sons, 2006.
[20] L. Gaul, S. Hurlebaus, J. Wirnitzer, H. Albrecht, Enhanced damping of lightweight structures by semiactive joints, Acta Mechanica, 195(1-4) (2008) 249-261.
[21] L. Zhou, G. Chen, Intelligent vibration control for high-speed spinning beam based on fuzzy self-tuning PID controller, Shock and Vibration, 2015 (2015).
[22] J. Burtscher, J. Fleischer, Adaptive tuned mass damper with variable mass for chatter avoidance, CIRP Annals, 66(1) (2017) 397-400.
[23] J. Munoa, A. Iglesias, A. Olarra, Z. Dombovari, M. Zatarain, G. Stepan, Design of self-tuneable mass damper for modular fixturing systems, CIRP Annals, 65(1) (2016) 389-392.
[24]  A. Bathaei, S.M. Zahrai, M. Ramezani, Semiactive seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms, Journal of Vibration and Control,  (2017) 1077546317696369.
[25]  Y. Hu, M.Z. Chen, Y. Sun, Comfort-oriented vehicle suspension design with skyhook inerter configuration, Journal of Sound and Vibration, 405 (2017) 34-47.
[26]   G. Kim, J. Kang, Seismic response control of adjacent building by using hybrid control algorithm of MR damper, Procedia Engineering, 14 (2011)1013-1020.
[27]  J.-H. Koo, M. Ahmadian, M. Setareh, T. Murray, In search of suitable control methods for semi-active tuned vibration absorbers, Modal Analysis, 10(2) (2004) 163-174.
[28] Y. Ji, J. Hu, Q. Ke, X. Zhan, Rapid quantum state transfer based on bang–bang Lyapunov control under various dissipative modes, Optik-International Journal  for Light and Electron Optics, 139 (2017) 373-384.
[29]  P. Brezas, M.C. Smith, W. Hoult, A clipped-optimal control algorithm for semi-active vehicle suspensions: Theory and experimental evaluation, Automatica, 53 (2015) 188-194.
[30] J.E. Brock, A note on the damped vibration absorber, Trans. ASME, J. Appl. Mech., 13(4) (1946) A-284.
[31]  T. IOI, K. IKEDA, On the dynamic vibration damped absorber of the vibration system, Bulletin of JSME, 21(151) (1978) 64-71.