مدل‌سازی ثابت سینتیکی حذف یون روی از پساب سنتزی با برنامه‌ریزی بیان ژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فرآوری مواد معدنی، مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 امیر کبیر

3 گروه شیمی دانشگاه صنعتی امیرکبیر

چکیده

جدایش یون­ها از پساب­ها و محیط­ هایی مانند هیدرومتالورژی در سال­های اخیر چالش اساسی در روند توسعه فلوتاسیون یونی بوده است. مطالعه­ های محدودی در زمینه سینتیک حذف یون­های فلزی به­ وسیله فلوتاسیون یونی انجام شده است؛ بنابراین در این مطالعه، مدل جدیدی با روش برنامه ­ریزی بیان ژن (GEP) برای پیش‌بینی ثابت سینتیکی حذف یون­های روی از پساب سنتزی با کلکتور سدیم دودسیل سولفات ارائه شده است. کارآیی فلوتاسیون یونی علاوه بر میزان حذف یون به میزان حذف آب در طول فرآیند نیز بستگی دارد؛ بدین منظور سینتیک حذف آب نیز بررسی شد. پارامترهای مؤثر بر حذف یون روی از جمله نسبت مولاریته یون روی به کلکتور، ضریب فعالیت و pH محلول انتخاب و تأثیر آن بر ثابت سرعت حذف یون روی و آب بررسی شد. مقادیر R2، RMSE و VAF به­ترتیب برابر با 98/0، 06/0 و 11/98 برای مرحله آزمون برای مدل‌سازی ثابت سینتیک حذف یون روی و مقادیر 94/0، 004/0 و 03/98 برای مدل‌سازی سینتیک حذف آب با استفاده از الگوریتم GEP به­ دست آمد. نتایج نشان داد که مدل­ های ارائه شده قابلیت استفاده برای پیش‌بینی ثابت سرعت سینتیکی حذف یون روی و حذف آب در طول فلوتاسیون را دارند. نتایج تجزیه و تحلیل حساسیت نشان داد که pH محلول و نسبت مولاریته یون روی به کلکتور به­ترتیب تأثیر معناداری بر ثابت سینتیکی حذف یون روی و حذف آب دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kinetic Constant Modeling of Zn(II) Ion Removal from Synthetic Wastewater by Gene Expression Programing

نویسندگان [English]

  • Fatemeh Sadat Hoseinian 1
  • bahram rezai 2
  • Elaheh Kowsari 3
1 Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Hafez Ave., Tehran, Iran.
3 Department of chemistry, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

The separation of ions from wastewater and environments such as hydrometallurgy has been a major challenge in the development of ion flotation in recent years. Few studies have been carried out on the kinetics of metal ion removal by ion flotation. In this study, a new model using the gene expression programming (GEP) method is proposed to predict the kinetic constant of zinc ion removal (k-Zn(II)) from synthetic wastewater with sodium dodecyl sulphate as a collector. The efficiency of ion flotation depends on both the amount of ion removal and water removed during the process. In this regard, the water removal kinetics constant (k-W) was also investigated. The effect of important parameters on k-Zn(II) and k-W including the ratio of SDS/Zn(II), the activity coefficient, and the pH were investigated. The values of R2, RMSE, and VAF of the GEP models for the testing data for k-Zn(II) were 0.98, 0.66, and 98.9 and for k-W, they were 0.94, 0.004, and 0.93, respectively. The results indicate the high performance of GEP models for the prediction of k-Zn(II) and k-W. The sensitivity analysis of GEP models showed that k-Zn(II) and k-W are more sensitive to pH and the ratio of SDS/Zn(II), respectively. 

کلیدواژه‌ها [English]

  • Ion flotation
  • Kinetics
  • Zn(II) ion removal
  • Water removal
  • Sensitivity analysis
[1] S. Nicol, K. Galvin, M. Engel, Ion flotation-potential applications to mineral processing, Minerals Engineering, 5(10-12) (1992) 1259-1275.
[2] H. Polat, D. Erdogan, Heavy metal removal from waste waters by ion flotation, Journal of Hazardous Materials, 148(1-2) (2007) 267-273.
[3] J. Rubio, M. Souza, R. Smith, Overview of flotation as a wastewater treatment technique, Minerals engineering, 15(3) (2002) 139-155.
[4] F.S. Hoseinian, M. Irannajad, A.J. Nooshabadi, Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters, International Journal of Mineral Processing, 143 (2015) 131-137.
[5] F.S. Hoseinian, M. Irannajad, M. Safari, Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation, Separation Science and Technology, 52(5) (2016), 892-902.
[6] A. Bodagh, H. Khoshdast, H. Sharafi, H. Shahbani Zahiri, K. Akbari Noghabi, Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector, Industrial & Engineering Chemistry Research, 52(10) (2013) 3910-3917.
[7] M. Reyes, F. Patiño, F.J. Tavera, R. Escudero, I. Rivera, M. Pérez, Kinetics and recovery of xanthate-copper compounds by ion flotation techniques, Journal of the Mexican Chemical Society, 53(1) (2009) 15-22.
[8] Z. Liu, F.M. Doyle, A thermodynamic approach to ion flotation. I. Kinetics of cupric ion flotation with alkylsulfates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1-3) (2001) 79-92.
[9] M. Reyes, F. Patiño, R. Escudero, M. Pérez, M.U. Flores, I.A. Reyes, Kinetics and hydrodynamics of silver ion flotation, Journal of the Mexican Chemical Society, 56(4) (2012) 408-416.
[10] F.M. Doyle, Z. Liu, The effect of triethylenetetraamine (Trien) on the ion flotation of Cu2+ and Ni2+, Journal of colloid and interface science, 258(2) (2003) 396-403.
[11] Z. Liu, F.M. Doyle, Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien), Langmuir, 25(16) (2009) 8927-8934.
[12] E.P. Mavros, K. Matis, Innovations in Flotation Technology,  (1992).
[13] C. McDonald, J. Jaganathan, Ion flotation of nickel using ethylhexadecyldimethylammonium bromide, Microchemical Journal, 27(2) (1982) 240-245.
[14] F.S. Hoseinian, B. Rezai, E. Kowsari, M. Safari, Kinetic study of Ni (II) removal using ion flotation: Effect of chemical interactions, Minerals Engineering, 119 (2018) 212-221.
[15] F.S. Hoseinian, B. Rezai, E. Kowsari, The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm, Journal of environmental management, 204 (2017) 311-317.
[16] K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G.E. Beheir, M. Refaat, Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water research, 44(5) (2010) 1449-1461.
[17] M.A. Soliman, G.M. Rashad, M.R. Mahmoud, Kinetics of ion flotation of Co (II)–EDTA complexes from aqueous solutions, Radiochimica Acta, 103(9) (2015) 643-652.
[18] A. Uribe‐Salas, R. Pérez‐Garibay, F. Nava‐Alonso, M. Castro‐Román, A kinetic model for Pb2+ flotation with sodium dodecylsulfate in a batch column, Separation science and technology, 40(15) (2005) 3225-3237.
[19] F.M. Doyle, Ion flotation—its potential for hydrometallurgical operations, International Journal of Mineral Processing, 72(1-4) (2003) 387-399.
[20] R.S. Faradonbeh, D.J. Armaghani, M. Monjezi, Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique, Bulletin of Engineering Geology and the Environment, 75(3) (2016) 993-1006.
[21] C. Ferreira, Gene expression programming in problem solving, in:  Soft computing and industry, Springer, 2002, pp. 635-653.
[22] F.S. Hoseinian, R.S. Faradonbeh, A. Abdollahzadeh, B. Rezai, S. Soltani-Mohammadi, Semi-autogenous mill power model development using gene expression programming, Powder Technology, 308 (2017) 61-69.
[23] C. Ferreira, Gene expression programming: mathematical modeling by an artificial intelligence, Springer, 2006.
[24] D.J. Armaghani, R.S. Faradonbeh, H. Rezaei, A.S.A. Rashid, H.B. Amnieh, Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming, Neural Computing and Applications,  (2016) 1-11.
[25] H.M. Azamathulla, Gene expression programming for prediction of scour depth downstream of sills, Journal of Hydrology, 460 (2012) 156-159.
[26] H.M. Azamathulla, Z. Ahmad, Gene-expression programming for transverse mixing coefficient, Journal of Hydrology, 434 (2012) 142-148.
[27] R.S. Faradonbeh, M. Monjezi, D.J. Armaghani, Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation, Engineering with Computers, 32(1) (2016) 123-133.
[28] M.Z. Hashmi, A.Y. Shamseldin, B.W. Melville, Statistical downscaling of watershed precipitation using Gene Expression Programming (GEP), Environmental Modelling & Software, 26(12) (2011) 1639-1646.
[29] M. Khandelwal, R.S. Faradonbeh, M. Monjezi, D.J. Armaghani, M.Z.B.A. Majid, S. Yagiz, Function development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression models, Engineering with Computers, 33(1) (2017) 13-21.
[30] N.A. Zakaria, H.M. Azamathulla, C.K. Chang, A.A. Ghani, Gene expression programming for total bed material load estimation—a case study, Science of the total environment, 408(21) (2010) 5078-5085.