ارائه روشی تحلیلی از ترکیب المان قابی بتن مسلح فیبری شبه تیموشنکو و تئوری میدان فشاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه عمران, ایران

2 عضو هیئت علمی

3 عضو هیئت علمی، دانشکده مهندسی، گروه عمران، دانشگاه فردوسی مشهد، ایران

چکیده

ارزیابی دقیق رفتار یک سازه با روش تحلیلی، بایستی توانایی تخمین مناسبی از سختی اولیه سازه، بیشینه ظرفیت و شکل پذیری‌های محلی و کلی را داشته باشد. در این پژوهش به منظور شبیه‌سازی رفتار غیرخطی سازه‌های بتنی مسلح تحت بارگذاری یکنوا، یک المان تیرستونی فیبری با روش کنترل جابه‌جایی مبتنی بر روش طول قوس خطی شده توسعه داده شده است. فرمول‌بندی این المان بر مبنای ترکیب تئوری تیر اویلر- برنولی و تیموشنکو به همراه اثرات اندرکنشی محوری، خمشی و برشی در دامنه هر المان پیاده‌سازی شده است. در جریان حل غیرخطی، سطح مقطع هر المان در نقاط گوسی، با مجموعه فیبرهای گسسته با رفتار تک محوری معادل می‌شود. همچنین به منظور در نظرگرفتن تغییر شکل برشی المان، رویکرد ترک پخشی چهارجهته و تئوری میدان فشاری اصالح شده (MCFT )در قالب تحلیل غیرخطی برشی به روش الگوریتم کنترل تغییر مکان مستقیم در زیربرنامه اصلی مورد توجه قرار گرفته است. در این پژوهش مبنای فرمول‌بندی عددی پیکربندی مرجع، پیکربندی گام قبل و پیکربندی تغییرشکل نیافته اولیه به صورت همزمان در نظر گرفته شده است و رویکرد تحلیلی الگوریتم، توانایی تغییر فرموالسیون لاگرانژی به روز شده به لاگرانژی کل منطبق با الگوریتم حاکم بر مسأله را نیز دارد. المان فیبری توسعه داده شده توسط آزمایش‌های تجربی متعددی مورد اعتبارسنجی شده و ارزیابی روش تحلیلی ارائه شده مورد آزمون قرار گرفته است. روش ارائه شده با فرض‌های صورت گرفته، در سازه‌های با مودهای ترکیبی حاکم خمشی- برشی تقریب نسبتا مناسب و روند همگرایی قابل قبول با سرعت پردازش تحلیلی باال را در مسائل را نتیجه می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Mixed Analytical Approach based on Semi-Timoshenko Planar Fiber Frame Element and Modified Compression Field Theory in RC Structures

نویسندگان [English]

  • Behrooz Yousefi 1
  • Mohammadreza Esfahani 2
  • Mohammad Reza Tavakolizadeh 3
1 Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Civil Engineering, Ferdowsi Unversity of Mashhad
3 Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

An accurate assessment of the behavior of structures by an analytical method should be able to estimate the initial stiffness of the structure, the maximum capacity and the local and global ductility. In this research, in order to simulate the nonlinear behavior of reinforced concrete structures under monotonic loading, a new fiber beam-column element was developed with a displacement control method using linearized arc-length approach. The formulation of the implemented element was based on the combination of Bernoulli and Timoshenko’s theory along with the axial, flexural, and shear interaction effects of each element. The cross-sectional area of each element in Gaussian points was equivalent to a set of discrete fibers with uniaxial constitutive behavior in the process of nonlinear solution. Also, in order to consider the elemental shear deformation, the four-way smeared cracked approach and the modified compression field theory (MCFT) was considered in nonlinear shear analysis using the direct-displacement control algorithm in the main sub-program. The reference configuration of numerical formulation was considered according to the configuration of the previous step and the initial configuration, simultaneously. The analytic approach of the algorithm had the ability to change the updated Lagrangian formulation to the total Lagrangian in accordance with the problem-solving convergence. The developed fiber element was validated by numerous experimental experiments and the evaluation of the proposed analytical method was tested. The proposed method led to an appropriate solution and an acceptable convergence process with high processing speed for problems with mixed combinational mechanisms.

کلیدواژه‌ها [English]

  • Fiber Beam-Column Element
  • Displacement Control
  • Linearized Arc-Length
  • Timoshenko's Theory
  • Modified Compression Field Theory
[1] F. Taucer, E. Spacone, F.C. Filippou, A fiber beam-column element for seismic response analysis of reinforced concrete structures, Earthquake Engineering Research Center, College of Engineering, University of California Berkeley, California, 1991.
[2]   E. Spacone, F.C. Filippou, F.F. Taucer, Fibre Beam–Column   Model   for   Non‐Linear   Analysis of R/C Frames: Part II. Applications, Earthquake engineering & structural dynamics, 25(7) (1996) 727- 742.
[3]   M.H. Scott, G.L. Fenves, Plastic hinge integration methods for force-based beam–column elements, Journal of Structural Engineering, 132(2) (2006) 244- 252.
[4] Z.-X. Li, Y. Gao, Q. Zhao, A 3D  flexure–shear  fiber element for modeling the seismic behavior of reinforced concrete columns, Engineering Structures, 117(Supplement C) (2016) 372-383.
[5] P. Ceresa, L. Petrini, R. Pinho, Flexure-shear fiber beam-column elements for modeling frame structures under seismic loading—state of the art, Journal of Earthquake Engineering, 11(S1) (2007) 46-88.
[6] M. Lodhi, H. Sezen, Estimation of monotonic behavior of reinforced concrete columns considering shear‐flexure‐axial    load    interaction,  Earthquake Engineering & Structural Dynamics, 41(15) (2012) 2159-2175.
[7]  A. Marini, E. Spacone, Analysis of reinforced concrete elements including shear effects, ACI Structural Journal, 103(5) (2006) 645.
[8]  P. Mergos, A. Kappos, A distributed shear and flexural flexibility model with shear–flexure interaction for R/C members subjected to seismic loading, Earthquake Engineering & Structural Dynamics, 37(12) (2008) 1349-1370.
[9] S.Y. Xu, J. Zhang, Hysteretic shear–flexure interaction model of reinforced concrete columns for seismic response assessment of bridges, Earthquake Engineering & Structural Dynamics, 40(3) (2011) 315- 337.
[10] S.-Y. Xu, J. Zhang, Axial–shear–flexure interaction hysteretic model for RC columns under combined actions, Engineering Structures, 34 (2012) 548-563.
[11] M. Petrangeli, P.E. Pinto, V. Ciampi, Fiber element for cyclic bending and shear of RC structures. I: Theory, Journal of Engineering Mechanics, 125(9) (1999) 994-1001.
[12]  P. Ceresa, L. Petrini, R. Pinho, R. Sousa, A fibre flexure–shear model for seismic analysis of RC‐framed structures, Earthquake Engineering & Structural Dynamics, 38(5) (2009) 565-586.
[13] R.S. Stramandinoli, H.L. La Rovere,  FE  model  for  nonlinear  analysis  of  reinforced  concrete beams considering shear deformation, Engineering structures, 35 (2012) 244-253.
[14] T. Mullapudi, A. Ayoub, Analysis of reinforced concrete columns subjected to combined axial, flexure, shear, and torsional loads, Journal of Structural Engineering, 139(4) (2012) 561-573.
[15] M. Sasani, A. Werner, A. Kazemi, Bar fracture modeling in progressive collapse analysis of reinforced concrete structures, Engineering Structures, 33(2) (2011) 401-409.
[16]H.R. Valipour, S.J. Foster, Finite element modelling of reinforced concrete framed structures including catenary action, Computers & structures, 88(9) (2010) 529-538.
[17] K. Orakcal, L.M.M. Sanchez, J.W. Wallace, Analytical modeling of reinforced  concrete  walls  for predicting flexural and coupled-shear-flexural responses, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 2006.
[18] A. Bazoune, Y. Khulief, N. Stephen, Shape functions of three-dimensional Timoshenko beam element, Journal of Sound and Vibration, 259(2) (2003) 473- 480.
[19] S. Puchegger, S. Bauer, D. Loidl, K. Kromp, H. Peterlik, Experimental validation of the shear correction factor, Journal of sound and vibration, 261(1) (2003) 177-184.
[20] W. Yu, D.H. Hodges, Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams, Journal of Applied Mechanics, 71(1) (2004) 15-23.
[21] J. Hutchinson, Shear coefficients for Timoshenko beam theory, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF APPLIED MECHANICS, 68(1) (2001) 87-92.
[22] S. Dong, C. Alpdogan, E. Taciroglu, Much ado about shear correction factors in Timoshenko beam theory, International Journal of Solids and Structures, 47(13) (2010) 1651-1665.
[23] K. Chan,  K.  Lai,  N.  Stephen,  K.  Young,  A  new method to determine the shear coefficient of Timoshenko beam theory, Journal of Sound and Vibration, 330(14) (2011) 3488-3497.
[24] S.P. Timoshenko, X. On the transverse vibrations  of bars of uniform cross-section, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(253) (1922) 125-131.
[25] F.J. Vecchio, M.P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear, Journal of the American Concrete Institute, 83(2) (1986) 219-231.
[26] K. Maekawa, H. Okamura, A. Pimanmas, Non- linear mechanics of reinforced concrete, Spon Press, 2003.
[27] B. Bujadham, K. MAEKAWA, The universal model for stress transfer across cracks in concrete, Doboku Gakkai Ronbunshu, 1992(451) (1992) 277-287.
[28]  H. Okamura, K. Maekawa, Nonlinear analysis and constitutive models of reinforced concrete, Gihodo- Shuppan Co, Tokyo, 1991.
[29]H. Shima, L.-L. Chou, H. Okamura, Micro and macro models for bond in reinforced concrete, Journal of the Faculty of Engineering, 39(2) (1987) 133-194.
[30] B. Li, Contact density model for stress transfer across cracks in concrete, Journal of the Faculty of Engineering, the University of Tokyo, (1) (1989) 9-52.
[31] M. Soltani, X. An, K. Maekawa, Computational model for post cracking analysis of RC membrane elements based on local stress–strain characteristics, Engineering structures, 25(8) (2003) 993-1007.
[32] H.M.M. Salem, Enhanced tension stiffening model and application to nonlinear dynamic analysis of reinforced concrete, (1998).
[33] C. Jin, M. Soltani, X. An, Experimental and numerical study of cracking behavior of openings in concrete dams, Computers & structures, 83(8) (2005) 525-535.
[34] M. Jirásek, Z.P. Bazant, Inelastic analysis of structures, John Wiley & Sons, (2002).
[35] X.-B.D. Pang, T.T. Hsu, Behavior of reinforced concrete membrane elements in shear, Structural Journal, 92(6) (1995) 665-679.
[36] E. Ramm, The Riks/Wempner approach-An extension  of  the   displacement   control   method   in nonlinear analysis, nonlinear computational mechanics, (1982) pp. 63-86.
[37] C.A. Felippa, Nonlinear finite element methods, Department of Aerospace Engineering Sciences and Center for Space Structures and Controls, 2001.
[38] K. Schweizerhof, P. Wriggers, Consistent linearization for path following methods in nonlinear FE analysis, Computer Methods in Applied Mechanics and Engineering, 59(3) (1986) 261-279.
[39] Y. Feng, D. Perić, D. Owen, Determination of travel directions in path-following methods, Mathematical and computer modelling, 21(7) (1995) 43-59.
[40] D. Palermo, F.J. Vecchio, Compression field modeling of reinforced concrete subjected to reversed loading: formulation, ACI Structural Journal, 100(5) (2003) 616-625.
[41] R. Lackner, H.A. Mang, Adaptive FE analysis of RC shells. I: Theory, Journal of engineering mechanics, 127(12) (2001) 1203-1212.
[42] S. Shaingchin, P. Lukkunaprasit, S.L. Wood, Influence of diagonal web reinforcement on cyclic behavior of structural walls, Engineering Structures, 29(4) (2007) 498-510.
[43] S.-C. Chun, D.-Y. Kim, Evaluation of mechanical anchorage of reinforcement by exterior beam-column joint experiments, in: Proceedings of 13th World Conference on Earthquake Engineering, (2004).
[44] F.J. Vecchio, M.B. Emara, Shear deformations in reinforced concrete frames, ACI Structural Journal, 89(1) (1992) 46-56.