[1] A. Behnia, H. Chai, M. Yorikawa, S. Momoki, M. Terazawa T. Shiotani, Integrated non-destructive assessment of concrete structures under flexure by acoustic emission and travel time to- mography, Construction and Building Materials, 67 (2014) 202- 215.
[2] H. Pahlavan, A. Naseri, A. Einollahi, Probabilistic Seismic Vulnerability assessment of RC Frame Structures Retrofitted with Steel Jacketing, Amirkabir Journal of Civil Engineering, (2018). (in Persian)
[3] D.J. Joo, Damage detection and system identification using a wavelet energy based approach, Columbia University, 2012.
[4] M. Ruzzene, A. Fasana, L. Garibaldi, B. Piombo, Natural fre-quencies and dampings identification using wavelet transform:application to real data, Mechanical systems and signal process ing, 11(2) (1997) 207-218
[5] A. Robertson, K. Park, K. Alvin, Identification of structural dynamics models using wavelet-generated impulse response data, Journal of vibration and acoustics, 120(1) (1998) 261-266
[6] R. Ghanem, F. Romeo, A wavelet-based approach for the identification of linear time-varying dynamical systems, Journal of sound and vibration, 234(4) (2000) 555-576
[7] C. Huang, S. Hung, C. Lin, W. Su, A wavelet‐based approach to identifying structural modal parameters from seismic response and free vibration data, Computer‐Aided Civil and Infrastructure Engineering, 20(6) (2005) 408-423.
[8] R.-P. Luk, R.I. Damper, Non-parametric linear time-invariant nal Processing, 16(3) (2006) 303-319.
[9] X. Xu, Z. Shi, Q. You, Identification of linear time-varying systems using a wavelet-based state-space method, Mechanical Systems and Signal Processing, 26 (2012) 91-103.
[10] Z.S.L. Shen, S. Law, Parameter identification of LTV dy-namical system based on wavelet method, In Proceedings of the Forth International Conference on Earthquake Engineering, Tai pei, Taiwan, October (2006), pp. 202–210.
[11] W. Staszewski, Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound and Vibration, 214(4) (1998) 639-658.
[12] J. Lardies, S. Gouttebroze, Identification of modal param eters using the wavelet transform, International Journal of Me- chanical Sciences, 44(11) (2002) 2263-2283.
[13] P. Argoul, T.-p. Le, Instantaneous indicators of structural be haviour based on the continuous Cauchy wavelet analysis, Me- chanical Systems and Signal Processing, 17(1) (2003) 243-250.
[14] J. Slavič, I. Simonovski, M. Boltežar, Damping identifica- tion using a continuous wavelet transform: application to real data, Journal of Sound and Vibration, 262(2) (2003) 291-307.
[15] A. Pandey, M. Biswas, M. Samman, Damage detection from changes in curvature mode shapes, Journal of sound and vibra- tion, 145(2) (1991) 321-332.
[16] S. Ravanfar, H. Razak, Z. Ismail, H. Monajemi, An im- proved method of parameter identification and damage detection in beam structures under flexural vibration using wavelet multi- resolution analysis, Sensors, 15(9) (2015) 22750-22775.
[17] R. Sampaio, N. Maia, J. Silva, Damage detection using the frequency-response-function curvature method, Journal of sound and vibration, 226(5) (1999) 1029-1042.
[18] A. Gentile, A. Messina, On the continuous wavelet trans-forms applied to discrete vibrational data for detecting open cracks in damaged beams, International Journal of Solids and Structures, 40(2) (2003) 295-315.
[19] S.-T. Quek, Q. Wang, L. Zhang, K.-K. Ang, Sensitivity anal-ysis of crack detection in beams by wavelet technique, Interna-tional journal of mechanical sciences, 43(12) (2001) 2899-2910.
[20] J.-C. Hong, Y. Kim, H. Lee, Y. Lee, Damage detection using the Lipschitz exponent estimated by the wavelet transform: ap-plications to vibration modes of a beam, International journal of solids and structures, 39(7) (2002) 1803-1816.
[21] Y. Yan, H. Hao, L. Yam, Vibration-based construction and extraction of structural damage feature index, International jour-nal of solids and structures, 41(24-25) (2004) 6661-6676.
[22] J.-G. Han, W.-X. Ren, Z.-S. Sun, Wavelet packet based dam-age identification of beam structures, International Journal of Sol-ids and Structures, 42(26) (2005) 6610-6627.
[23] B.H. Kim, T. Park, G.Z. Voyiadjis, Damage estimation on beam-like structures using the multi-resolution analysis, Interna-tional Journal of Solids and Structures, 43(14-15) (2006) 4238-4257.
[24] X. Zhu, S. Law, Wavelet-based crack identification of bridge beam from operational deflection time history, International Jour-nal of Solids and Structures, 43(7-8) (2006) 2299-2317.
[25] S. Zhong, S.O. Oyadiji, Detection of cracks in simply-sup-ported beams by continuous wavelet transform of reconstructed modal data, Computers & structures, 89(1-2) (2011) 127-148.
[26] A. Ovanesova, L.E. Suarez, Applications of wavelet trans-forms to damage detection in frame structures, Engineering struc-tures, 26(1) (2004) 39-49.
[27] C.-C. Chang, L.-W. Chen, Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach, Mechanical Systems and Signal Processing, 19(1) (2005) 139-155.
[28] E. Douka, S. Loutridis, A. Trochidis, Crack identification in plates using wavelet analysis, Journal of sound and vibration, 270(1-2) (2004) 279-295.
[29] W. Xu, M. Radzieński, W. Ostachowicz, M. Cao, Damage detection in plates using two-dimensional directional Gaussian wavelets and laser scanned operating deflection shapes, Struc-tural Health Monitoring, 12(5-6) (2013) 457-468.
[30] W. Fan, P. Qiao, A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures, Inter-national Journal of Solids and Structures, 46(25-26) (2009) 4379-4395.
[31] A. Bagheri, G. Ghodrati Amiri, M. Khorasani, H. Bakhshi, Structural damage identification of plates based on modal data using 2D discrete wavelet transform, Structural Engineering and Mechanics, 40(1) (2011) 13-28.
[32] S. Mallat, A wavelet tour of signal processing, Elsevier, 1999.
[33] I. Daubechies, Ten lectures on wavelets, Siam, 1992.
[34] C.R. Farrar, S.W. Doebling, An overview of modal-based damage identification methods, Los Alamos National Lab., NM
(United States), 1997.
[35] J. Vanherzeele, S. Vanlanduit, P. Guillaume, Reducing meas-urement time for a laser Doppler vibrometer using regressive techniques, Optics and lasers in engineering, 45(1) (2007) 49-56.