[1] M.J. Molina, L.T. Molina, Megacities and atmospheric pollution, Journal of the Air & Waste Management Association, 54(6) (2004) 644-680.
[2] S. Sakulniyomporn, K. Kubaha, C. Chullabodhi, Estimating the health damage costs of electricity generation in Thailand, in: Energy and Sustainable Development: Issues and Strategies (ESD), 2010 Proceedings of the International Conference on, IEEE, 2010, pp. 1-9.
[3] S. Nazari, O. Shahhoseini, A. Sohrabi-Kashani, S. Davari, H. Sahabi, A. Rezaeian, SO2 pollution of heavy oil-fired steam power plants in Iran, Energy policy, 43 (2012) 456-465.
[4] Statistical Report on 49 Years of Activities of Iran Electric Power Industry (1967-2015), Tavanir Holding Company, Iran, 2016.
[5] M. Lopez, M. Zuk, V. Garibay, G. Tzintzun, R. Iniestra, A. Fernandez, Health impacts from power plant emissions in Mexico, Atmospheric environment, 39(7) (2005) 1199-1209.
[6] J. Hao, L. Wang, M. Shen, L. Li, J. Hu, Air quality impacts of power plant emissions in Beijing, Environmental Pollution, 147(2) (2007) 401-408.
[7] L. Cox, R. Blaszczak, Nitrogen oxides (NOx) why and how they are controlled, DIANE Publishing, 1999.
[8] H. Yu, A.L. Stuart, Spatiotemporal distributions of ambient oxides of nitrogen, with implications for exposure inequality and urban design, Journal of the Air & Waste Management Association, 63(8) (2013) 943-955.
[9] S. Abdul-Wahab, A. Sappurd, A. Al-Damkhi, Application of California Puff (CALPUFF) model: a case study for Oman, Clean Technologies and Environmental Policy, 13(1) (2011) 177-189.
[10] B. Chowdhury, P.K. Karamchandani, R.I. Sykes, D.S. Henn, E. Knipping, Reactive puff model SCICHEM: Model enhancements and performance studies, Atmospheric Environment, 117 (2015) 242-258.
[11] N.S. Holmes, L. Morawska, A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available, Atmospheric environment, 40(30) (2006) 5902-5928.
[12] S. Li, S. Xie, Spatial distribution and source analysis of SO2 concentration in Urumqi, International Journal of Hydrogen Energy, 41(35) (2016) 15899-15908.
[13] S.A. Abdul-Wahab, S.O. Fadlallah, A study of the effects of vehicle emissions on the atmosphere of Sultan Qaboos University in Oman, Atmospheric environment, 98 (2014) 158-167.
[14] D. Yang, G. Chen, R. Zhang, Estimated Public Health Exposure to H2S Emissions from a Sour Gas Well Blowout in Kaixian County, China, Aerosol and Air Quality Research, 6(4) (2006) 430-443.
[15] D.L. MacIntosh, J.H. Stewart, T.A. Myatt, J.E. Sabato, G.C. Flowers, K.W. Brown, D.J. Hlinka, D.A. Sullivan, Use of CALPUFF for exposure assessment in a near-field, complex terrain setting, Atmospheric Environment, 44(2) (2010) 262-270.
[16] H. Tian, P. Qiu, K. Cheng, J. Gao, L. Lu, K. Liu, X. Liu, Current status and future trends of SO2 and NOx pollution during the 12th FYP period in Guiyang city of China, Atmospheric Environment, 69 (2013) 273-280.
[17] K. Ghannam, M. El-Fadel, Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach, Atmospheric Environment, 69 (2013) 156-169.
[18] S.A. Abdul-Wahab, K. Chan, A. Elkamel, L. Ahmadi, Effects of meteorological conditions on the concentration and dispersion of an accidental release of H2S in Canada, Atmospheric Environment, 82 (2014) 316-326.
[19] K. Prueksakorn, T.-H. Kim, C. Vongmahadlek, Applications of WRF/CALPUFF modeling system and multi-monitoring methods to investigate the effect of seasonal variations on odor dispersion: a case study of Changwon City, South Korea, Air Quality, Atmosphere & Health, 7(1) (2014) 13-27.
[20] P. Holnicki, A. Kałuszko, W. Trapp, An urban scale application and validation of the CALPUFF model, Atmospheric Pollution Research, 7(3) (2016) 393-402.
[21] S. Abdul-Wahab, G. Al-Rawas, S. Ali, S. Fadlallah, H. Al-Dhamri, Atmospheric dispersion modeling of CO2 emissions from a cement plant’s sources, Clean Technologies and Environmental Policy, 19(6) (2017) 1621-1638.
[22] J.S. Scire, D.G. Strimaitis, R.J. Yamartino, A user’s guide for the CALPUFF dispersion model, Earth Tech, Inc. Concord, MA, (2000).
[23] J.S. Scire, D.G. Strimaitis, F.R. Robe, Evaluation of enhancements to the CALPUFF model for offshore and coastal applications, Federal Register, (2003).
[24] J.S. Scire, F.R. Robe, M.E. Fernau, R.J. Yamartino, A user’s guide for the CALMET Meteorological Model, Earth Tech, USA, 37 (2000).
[25] A.D. Visscher, CALPUFF AND CALMET, in: Air Dispersion Modeling, John Wiley & Sons, Inc, 2013, pp. 514-541.
[26] W. Pfender, R. Graw, W. Bradley, M. Carney, L. Maxwell, Use of a complex air pollution model to estimate dispersal and deposition of grass stem rust urediniospores at landscape scale, Agricultural and forest meteorology, 139(1-2) (2006) 138-153.
[27] A. Hernández-Garces, J.A. Souto, Á. Rodríguez, S. Saavedra, J.J. Casares, Validation of CALMET/CALPUFF models simulations around a large power plant stack, Física de la Tierra, 27 (2015) 35.
[28] T.G. Farr, P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, The shuttle radar topography mission, Reviews of geophysics, 45(2) (2007).
[29] Y.-L. Lin, R.D. Farley, H.D. Orville, Bulk parameterization of the snow field in a cloud model, Journal of Climate and Applied Meteorology, 22(6) (1983) 1065-1092.
[30] M.-D. Chou, M.J. Suarez, X.-Z. Liang, M.M.-H. Yan, C. Cote, A thermal infrared radiation parameterization for atmospheric studies, (2001).
[31] E.J. Mlawer, S.J. Taubman, P.D. Brown, M.J. Iacono, S.A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave, Journal of Geophysical Research: Atmospheres, 102(D14) (1997) 16663-16682.
[32] Z. Janjic, The surface layer parameterization in the NCEP Eta Model, World Meteorological Organization-Publications-WMO TD, (1996) 4.16-14.17.
[33] M. Tewari, F. Chen, W. Wang, J. Dudhia, M. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, R. Cuenca, Implementation and verification of the unified NOAH land surface model in the WRF model, in: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 2004.
[34] Z.I. Janjić, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes, Monthly Weather Review, 122(5) (1994) 927-945.
[35] J.S. Kain, The Kain–Fritsch convective parameterization: an update, Journal of Applied Meteorology, 43(1) (2004) 170-181.
[36] F. Jafarigol, F. Atabi, M. Momeni, The Survey of NOX Distribution Using Dispersion Models AERMOD and CALPUFF at a Gas Refinery, Journal of Environmental Health Engineering, 3(3) (2016) 193-205.
[37] J.S. Scire, Z.-X. Wu, D.G. Strimaitis, Implementation and Evaluation of ISORROPIA in CALPUFF, (2013).
[38] J.S. Irwin, Interagency workgroup on air quality modeling (IWAQM) phase 2 summary report and recommendations for modeling longrange transport impacts, DIANE Publishing, 1998.
[39] A.Q. Branch, Reassessment of the Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report: Revisions to Phase 2 Recommendations, (2009).
[40] J. Chang, S. Hanna, Air quality model performance evaluation, Meteorology and Atmospheric Physics, 87(1) (2004) 167-196.
[41] H.D. Lee, J.W. Yoo, M.K. Kang, J.S. Kang, J.H. Jung, K.J. Oh, Evaluation of concentrations and source contribution of PM10 and SO2 emitted from industrial complexes in Ulsan, Korea: Interfacing of the WRF–CALPUFF modeling tools, Atmospheric Pollution Research, 5(4) (2014) 664-676.
[42] K. Seangkiatiyuth, V. Surapipith, K. Tantrakarnapa, A.W. Lothongkum, Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex, Journal of Environmental Sciences, 23(6) (2011) 931-940.
[43] S. Sillman, Tropospheric ozone and photochemical smog, Treatise on Geochemistry, 9 (2003) 612.
[44] J. Ma, H. Yi, X. Tang, Y. Zhang, Y. Xiang, L. Pu, Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city, Journal of Environmental Sciences, 25(8) (2013) 1608-1617.
[45] B. Zou, J.G. Wilson, F.B. Zhan, Y. Zeng, K. Wu, Spatial-temporal variations in regional ambient sulfur dioxide concentration and source-contribution analysis: A dispersion modeling approach, Atmospheric environment, 45(28) (2011) 4977-4985.