[1] R. Cioffi, L. Maffucci, L. Santoro, Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue, Resour Conserv Recycl, 40 (1) (2003) 27–38.
[2] Z. Yunsheng, S. Wei, L. Zongjin, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement Appl Clay Sci, 47 (3–4) (2010) 271–5.
[3] J. B. Edouard, Experimental evaluation of the durability of fly ash-based geopolymer concrete in the marine environment, University Boca Raton, Florida, (2011).
[4] S. Hu, H. Wang, G. Zhang, Q. Ding, Bonding and abrasion resistance of geopolymeric repair material made with steel slag, Cement & Concrete Composites 30 (2008) 239–244.
[5] Z. Zhang, Yao X., Zhu H., Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties, Applied Clay Science, 49 (2010) 1–6.
[6] J. E. Oh, P. J. M. Monteiro, S. S. Jun, S. Choi, S. M. Clark, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers, Cement and Concrete Research, 40 (2010), 189–196.
[7] S. Songpiriyakij, T. Pulngern, P. Pungpremtrakul, Ch. Jaturapitakkul, Anchorage of steel bars in concrete by geopolymer paste, Materials and Design, 32 (2011) 3021–3028.
[8] H. M. Giasuddin, J. G. Sanjayan, P.G. Ranjith, Strength of geopolymer cured in saline water in ambient conditions, Fuel, 107 (2013) 34–39.
[9] D. Bondar, Alkali activation of Iranian natural pozzolans for producing geopolymer cement and concrete: A dissertation submitted to University of Sheffield in fulfilment of the requirements for the degree of Doctor of Philosophy, UK, (2009).
[10] Ramezanianpour A.A.; Zolfagharnasab A.; Bahman Zadeh F., Ramezanianpour A.M., “Investigation of Mechanical Properties and Durability of Slag- based Geopolymer Concrete Against Injection of Chloride Ion”, Journal of Iran Concrete 2016; 61 (in Persian).
[11] Maddah M.R., “The effect of different solutions in the production of geopolymer cements with two types of pozzolan and thier mechanical properties and penetration of chloride ions in geopolymer concretes; MSC Thesis (Supervisor: Ramezanianpour A.A); Amirkabir University of Technology; 2013 (in Persian).
[12] ASTM, C 1437: Standard Test Method for Flow of Hydraulic Cement Mortar, Annual Book of ASTM Standards, vol. 04.01, American Society for Testing and Materials, United States (2001).
[13] ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, vol. 04.02, American Society for Testing and Materials, United States, (2001).