[1] F.M. Nejad, H. Zakeri, A comparison of multi-resolution methods for detection and isolation of pavement distress, Expert Systems with Applications, 38(3) (2011) 2857-2872.
[2] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of microsoft kinect and asus xtion sensors, Measurement, 46(6) (2013) 1800-1806.
[3] A. Corti, S. Giancola, G. Mainetti, R. Sala, A metrological characterization of the Kinect V2 time-of-flight camera, Robotics and Autonomous Systems, 75 (2016) 584-594.
[4] H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, L. Díaz-Vilariño, Metrological comparison between Kinect I and Kinect II sensors, Measurement, 70 (2015) 21-26.
[5] A.M. Pinto, P. Costa, A.P. Moreira, L.F. Rocha, G. Veiga, E. Moreira, Evaluation of depth sensors for robotic applications, in: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, IEEE, 2015, pp. 139-143.
[6] E. Lachat, H. Macher, M. Mittet, T. Landes, P. Grussenmeyer, First experiences with Kinect v2 sensor for close range 3D modelling, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5) (2015) 93.
[7] T. Butkiewicz, Low-cost coastal mapping using Kinect v2 time-of-flight cameras, in: 2014 Oceans-St. John's, IEEE, 2014, pp. 1-9.
[8] K.H. McGhee, Automated pavement distress collection techniques, Transportation Research Board, 2004.
[9] R.A. El-laithy, J. Huang, M. Yeh, Study on the use of Microsoft Kinect for robotics applications, in: Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, IEEE, 2012, pp. 1280-1288.
[10] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, R. Siegwart, Kinect v2 for mobile robot navigation: Evaluation and modeling, in: 2015 International Conference on Advanced Robotics (ICAR), IEEE, 2015, pp. 388-394.
[11] S. Zennaro, Evaluation of Microsoft Kinect 360 and Microsoft Kinect One for robotics and computer vision applications, (2014).
[12] A. Mahmoudzadeh, S.F. Yeganeh, A. Golroo, Kinect, a novel cutting edge tool in pavement data collection, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1) (2015) 425.
[13] I. Moazzam, K. Kamal, S. Mathavan, S. Usman, M. Rahman, Metrology and visualization of potholes using the microsoft kinect sensor, in: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), IEEE, 2013, pp. 1284-1291.
[14] K. Kamal, S. Mathavan, T. Zafar, I. Moazzam, A. Ali, S.U. Ahmad, M. Rahman, Performance assessment of Kinect as a sensor for pothole imaging and metrology, International Journal of Pavement Engineering, 19(7) (2018) 565-576.
[15] D. Joubert, A. Tyatyantsi, J. Mphahlehle, V. Manchidi, Pothole tagging system, (2011).
[16] T. Kim, S.-K. Ryu, Review and analysis of pothole detection methods, Journal of Emerging Trends in Computing and Information Sciences, 5(8) (2014) 603-608.
[17] C. Koch, G.M. Jog, I. Brilakis, Automated pothole distress assessment using asphalt pavement video data, Journal of Computing in Civil Engineering, 27(4) (2012) 370-378.
[18] M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, B. Becerik-Gerber, Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor, Journal of Computing in Civil Engineering, 27(6) (2012) 743-754.
[19] S. Xie, 3D pavement surface reconstruction and cracking recognition using Kinect-based solution, Albuquerque, NM: Univ. of New Mexico Albuquerque, (2015).
[20] Y.L. Chen, M.R. Jahanshahi, P. Manjunatha, W. Gan, M. Abdelbarr, S.F. Masri, B. Becerik-Gerber, J.P. Caffrey, Inexpensive multimodal sensor fusion system for autonomous data acquisition of road surface conditions, IEEE Sensors Journal, 16(21) (2016) 7731-7743.
[21] G.H. Golub, C. Reinsch, Singular value decomposition and least squares solutions, in: Linear Algebra, Springer, 1971, pp. 134-151.
[22] K. Baker, Singular value decomposition tutorial, The Ohio State University, 24 (2005).
[23] J.A. Suykens, SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions, Applied and Computational Harmonic Analysis, 40(3) (2016) 600-609.
[24] G.H. Golub, C.F. Van Loan, Matrix computations, JHU press, 2012.
[25] G.W. Stewart, On the early history of the singular value decomposition, SIAM review, 35(4) (1993) 551-566.
[26] C. Kim, S. Yun, S.-W. Jung, C.S. Won, Color and depth image correspondence for Kinect v2, in: Advanced Multimedia and Ubiquitous Engineering, Springer, 2015, pp. 111-116.
[27] M.R. Jahanshahi, Vision-based studies for structural health monitoring and condition assessment, University of Southern California, 2011.
[28] M. Brown, D.G. Lowe, Recognising Panoramas, in: ICCV, 2003, pp. 1218.
[29] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-Up Robust Features (SURF) Comput. Vis. Image Underst, in, New York, NY, USA: Elsevier Science Inc.,-3, 2008.
[30] P.H. Torr, A. Zisserman, MLESAC: A new robust estimator with application to estimating image geometry, Computer vision and image understanding, 78(1) (2000) 138-156.
[31] M. Brown, D.G. Lowe, Automatic panoramic image stitching using invariant features, International journal of computer vision, 74(1) (2007) 59-73.
[32] A.E.E. M, Standard Test Method for Measuring Rut-Depth of Pavement Surfaces Using a Straightedge, in, ASTM Standards, ASTM International USA, 2005.