[1] Misiunas, D. Vitkovsky´, J. P. Olsson, G. Simpson, A. R. & Lambert, M. F. (2005). Pipeline break detection using pressure transient monitoring. Journal of Water Resources Planning and Management, 131)4(, 316-325.
[2] Haghighi, a. )1388( Development of pipeline leakage and calibration methods based on reverse transient current modeling. Ph.D. Department of Civil Engineering, Khaje Nasir Din Tusi University of Technology. (in Persian)
[3] Colombo, A.F. Karney, B.W. 2002. Energy and costs of leaks: toward a comprehensive picture. Journal of Water Resources Planning and Management, ASCE 128 )6(, 441e450.
[4] Streeter, V. L., and Wylie, E. B. )1978(. Fluid transients,McGraw–Hill International Books, New York.
[5] Brunone, B., and Ferrante, M. (2001). “Detecting leaks in pressurised pipes by means of transients.” J. Hydraul. Res., 39)5(, 539–547.
[6] Covas, D. I. C., Stoianov, I., Mano, J., Ramos, H. M., Gra- ham, N., and Maksimovic, C. (2004). “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—Experi- mental analysis and creep characterization.” J. Hydraul. Res., 42(5), 517–531.
[7] Covas, D. I. C., Stoianov, I., Mano, J., Ramos, H. M., Gra- ham, N., and Maksimovic, C. (2005). “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Mod- el development, calibration and verification.” J. Hydraul. Res., 43(1), 56–70.
[8] Soares, A. K., Covas, D. I. C., and Reis, R. L. F. (2008). “Analysis of PVC pipe-wall viscoelasticity during water ham- mer.” J. Hydraul. Eng.,
10.1061/(ASCE)0733-9429(2008)134:9(1389), 1389–1394.
[9] Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Liggett,
J. A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection. Journal of Water Resources Planning and Management, 133)6(, 519-530.
[10] Al-Khomairi A (2008) Leak detection in long pipelines using the least squares method. J Hydraul Res 46(3):392–401.
[11] Ferrante, M., Massari, C., Brunone, B., and Meniconi, S. (2011). “Experimental evidence of hysteresis in the head dis-
charge relationship for a leak in a polyethylene pipe.” J. Hydraul. Eng., 10.1061/(ASCE)HY .1943-7900.0000360, 775–780.
[12] Keramat, A., Tijsseling, A. S., Hou, Q., and Ahmadi, A. (2012). “Fluid-structure interaction with pipe-wall viscoelasticity during water hammer.” J. Fluid. Struct., 28, 434–455.
[13] Duan, H., Ghidaoui, M., Lee, P. J., and Tung, Y. (2010). “Unsteady friction and visco-elasticity in pipe fluid transients.” J. Hydraul. Res., 48(3), 354–362.
[14] Lee, P. J., Duan, H. F., Ghidaoui, M., and Karney, B. )2014(. “Frequency domain analysis of pipe fluid transient behavior.” J. Hydraul. Res., 51(6), 609–622.
[15] Taebei, H., Fathi-Moghadam, M. (1393). Hydrolic Flow Measurement in Split Pipelines. Journal of (in Persian) Science and Engineering. Volume 37, number 4, pp. 55-62. Irrigation
[16] Huang, Y. C., Lin, C. C., & Yeh, H. D. (2015). An Opti- mization Approach to Leak Detection in Pipe Networks Using Simulated Annealing. Water Resources Management, 29(11), 4185-4201.
[17] Chaudhry M.H (1987) Applied Hydraulic Transients: sec- ond edition Van Nostrand Reinhold Co., New York.
[18] Wylie E. Benjamin, Streeter Victor L, Suo Lisheng (1993) Fluid Transients in Systems: Prentice Hall.