[1] J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement, Ecological Engineering, 36(2) (2010) 197-210.
[2] N.W. Soon, L.M. Lee, T.C. Khun, H.S. Ling, Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation, Journal of Geotechnical and Geoenvironmental Engineering, 140(5) (2014) 04014006.
[3] R.H. Karol, Chemical grouting and soil stabilization, revised and expanded, Crc Press, 2003.
[4] J.T. DeJong, M.B. Fritzges, K. Nüsslein, Microbially induced cementation to control sand response to undrained shear, Journal of Geotechnical and Geoenvironmental Engineering, 132(11) (2006) 1381-1392.
[5] V.S. Whiffin, L.A. van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiology Journal, 24(5) (2007) 417-423.
[6] L.A. van Paassen, R. Ghose, T.J. van der Linden, W.R. van der Star, M.C. van Loosdrecht, Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment, Journal of Geotechnical and Geoenvironmental Engineering, 136(12) (2010) 1721-1728.
[7] V. Ivanov, J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Reviews in Environmental Science and Bio/Technology, 7(2) (2008) 139-153.
[8] Y. Inagaki, M. Tsukamoto, H. Mori, S. Nakajiman, T. Sasaki, S. Kawasaki, A centrifugal model test of microbial carbonate precipitation as liquefaction countermeasure, Jiban Kogaku Janaru, 6(2) (2011) 157-167.
[9] B. Montoya, J. DeJong, R. Boulanger, Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation, Géotechnique, 63(4) (2013) 302.
[10] S.C. Bang, S.S. Bang, KGS Awards Lectures: application of microbiologically induced soil stabilization technique for dust suppression, International Journal of Geo-Engineering, 3(2) (2011) 27-37.
[11] S.K. Ramachandran, V. Ramakrishnan, S.S. Bang, Remediation of concrete using micro-organisms, ACI Materials Journal-American Concrete Institute, 98(1) (2001) 3-9.
[12] S. Bang, J. Lippert, U. Yerra, S. Mulukutla, V. Ramakrishnan, Microbial calcite, a bio-based smart nanomaterial in concrete remediation, International Journal of Smart and Nano Materials, 1(1) (2010) 28-39.
[13] V. Achal, X. Pan, N. Özyurt, Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation, Ecological Engineering, 37(4) (2011) 554-559.
[14] W. De Muynck, D. Debrouwer, N. De Belie, W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Cement and concrete Research, 38(7) (2008) 1005-1014.
[15] P. Suer, N. Hallberg, C. Carlsson, D. Bendz, G. Holm, Biogrouting compared to jet grouting: environmental (LCA) and economical assessment, Journal of Environmental Science and Health Part A, 44(4) (2009) 346-353.
[16] S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO 3, Soil Biology and Biochemistry, 31(11) (1999) 1563-1571.
[17] L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Canadian Geotechnical Journal, 50(1) (2013) 81-90.
[18] L. Van Paassen, M. Harkes, G. Van Zwieten, W. Van der Zon, W. Van der Star, M. Van Loosdrecht, Scale up of BioGrout: a biological ground reinforcement method, in: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering, Lansdale IOS Press, 2009, pp. 2328-2333.
[19] J.K. Mitchell, J.C. Santamarina, Biological considerations in geotechnical engineering, Journal of geotechnical and geoenvironmental engineering, 131(10) (2005) 1222-1233.
[20] T. Zhu, M. Dittrich, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review, Frontiers in bioengineering and biotechnology, 4 (2016).
[21] B. Mortensen, M. Haber, J. DeJong, L. Caslake, D. Nelson, Effects of environmental factors on microbial induced calcium carbonate precipitation, Journal of applied microbiology, 111(2) (2011) 338-349.
[22] M. Ismail, H. Joer, M. Randolph, A. Meritt, Cementation of porous materials using calcite, Geotechnique, 52(5) (2002) 313-324.
[23] V.S. Whiffin, Microbial CaCO3 precipitation for the production of biocement, Murdoch University, 2004.
[24] M.P. Harkes, L.A. Van Paassen, J.L. Booster, V.S. Whiffin, M.C. van Loosdrecht, Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecological Engineering, 36(2) (2010) 112-117.
[25] V. Stabnikov, C. Jian, V. Ivanov, Y. Li, Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand, World Journal of Microbiology and Biotechnology, 29(8) (2013) 1453-1460.
[26] N. Turk, W. Dearman, A correction equation on the influence of length-to diameter ratio on the uniaxial compressive strength of rocks, Engineering geology, 22(3) (1986) 293-300.
[27] Y. Duraisamy, Strength And Stiffness Improvement Of Bio-Cemented Sydney Sand, (2016).
[28] B. Montoya, J. DeJong, Stress-strain behavior of sands cemented by microbially induced calcite precipitation, Journal of Geotechnical and Geoenvironmental Engineering, 141(6) (2015) 04015019.
[29] A.A. Qabany, B. Mortensen, B. Martinez, K. Soga, J. DeJong, Microbial carbonate precipitation: correlation of S-wave velocity with calcite precipitation, in: Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011, pp. 3993-4001.
[30] T. Barkouki, B. Martinez, B. Mortensen, T. Weathers, J. De Jong, T. Ginn, N. Spycher, R. Smith, Y. Fujita, Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments, Transport in Porous Media, 90(1) (2011) 23-39.
[31] L.A. van Paassen, M. van Loosdrecht, M. Pieron, A. Mulder, D. Ngan-Tillard, T. Van der Linden, Strength and deformation of biologically cemented sandstone, in: ISRM Regional Symposium-EUROCK 2009, International Society for Rock Mechanics, 2009.
[32] L. Cheng, M. Shahin, R. Cord-Ruwisch, M. Addis, T. Hartanto, C. Elms, Soil stabilisation by Microbial-Induced Calcite Precipitation (MICP): Investigation into some physical and environmental aspects, in: 7th International Congress on Environmental Geotechnics: iceg2014, Engineers Australia, 2014, pp. 1105.
[33] S.M. Al-Thawadi, Consolidation of sand particles by aggregates of calcite nanoparticles synthesized by ureolytic bacteria under non-sterile conditions, J Chem Sci Technol, 2(3) (2013) 141-146.
[34] E. Boquet, A. Boronat, A. Ramos-Cormenzana, Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon, Nature, 246(5434) (1973) 527-529.
[35] H. Yasuhara, D. Neupane, K. Hayashi, M. Okamura, Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils and Foundations, 52(3) (2012) 539-549.
[36] T.R. Ginn, B.D. Wood, K.E. Nelson, T.D. Scheibe, E.M. Murphy, T.P. Clement, Processes in microbial transport in the natural subsurface, Advances in Water Resources, 25(8) (2002) 1017-1042.