بهبود مقاومت و پایداری سطحی خاک با استفاده از فرایند EICP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

2 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانشکده علوم زیستی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در سال‌های اخیر فرسایس سطحی خاک، به خصوص توسط باد موجب افزایش سطح بیابان‌ها و افزایش مشکلات برای اکوسیستم شده است. مقاوم کردن سطحی خاک با استفاده از روش‌های زیستی یکی از روش‌های جدید مقابله با مسئله‌ی فرسایش در خاک می‌باشد. در این تحقیق عصاره‌ی خام اندام هوایی گیاه سویا به عنوان منبع غنی از آنزیم اوره‌آز در فرایند ترسیب کلسیم کربنات القایی (EICP) استفاده شده است. در این فرایند اوره توسط آنزیم اوره‌آز هیدولیز می گردد و سپس کربنات تولید شده با کلسیم موجود در محیط محلول EICP ترکیب می شود و کلسیم‌کربنات تولید می شود که به عنوان چسباننده ذرات خاک عمل می‌کند. عصاره‌ی گیاهی جایگزین مناسبی برای آنزیم خالص اوره‌آز یا آنزیم به دست آمده توسط باکتری‌های تولید کننده آنزیم اوره آز می باشد که تهیه آنها هزینه‌بر می‌باشد. سه نوع خاک برای عمل سیمانتاسیون زیستی با استفاده از فرایند EICP مورد پاشش محلول EICP قرار گرفته و آزمایش سنجش مقاوت خاک با استفاده از نفوذ سنج جیبی برروی خاک انجام شده است. ضخامت پوسته‌های تشکیل شده در اثر پاشش محلول اندازه‌گیری شده است. نتایج نشان‌گر آن است که روش استفاده شده موجب افزایش مناسب مقاومت سطح خاک می‌گردد و روشی مناسب برای جلوگیری از فرسایش خاک می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving Soil Surface Resistance and Stability Using EICP Process

نویسندگان [English]

  • Sepideh Aghaalizadeh 1
  • Farzin Kalantary 2
  • Faezeh Ghanati 3
1 Department of Civil Engineering, K.N. Toosi University of Technology, Valiasr St., Mirdamad Cr., Tehran, Iran
2 Department of Civil Engineering, K.N. Toosi University of Technology, Valiasr St., Mirdamad Cr., Tehran, Iran
3 Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran
چکیده [English]

In recent years, soil surface erosion, especially by wind, has increased the area of deserts and increased problems for the ecosystem. Using biological methods to strengthen the soil's surface is a new way to prevent soil erosion. In this study, crude extract of soybean shoots has been used as a rich source of urease enzyme in the process of enzyme induced calcium carbonate precipitation (EICP). In this process, urea is hydrolyzed by urease enzyme and then the produced carbonate is combined with calcium in the EICP solution to produce calcium carbonate which acts as a binder for soil particles. The plant extract is a suitable substitute for pure urease enzyme or enzyme obtained by bacteria, which is costly to prepare. Three types of soils have been sprayed with EICP solution for biocementation using the EICP process and soil strength measurement test has been performed on the soil using a penetrometer. The thickness of the crust formed by the spraying of the solution has been measured. The results show that the method used increases the soil surface resistance and is a suitable method to prevent soil erosion.

کلیدواژه‌ها [English]

  • EICP
  • Erosion
  • Retrofitting
  • Penetrometer
  • Sand
  1. Hammes, F., et al., Calcium removal from industrial wastewater by bio‐catalytic CaCO3 precipitation. Journal of Chemical Technology and Biotechnology, 2003. 78(6): p. 670-677.
  2. van Paassen, L.A., et al., Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 2010. 136(12): p. 1721-1728.
  3. Wiktor, V. and H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 2011. 33(7): p. 763-770.
  4. Tiano, P., L. Biagiotti, and G. Mastromei, Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. Journal of microbiological methods, 1999. 36(1): p. 139-145.
  5. Movahedan, M., N. Abbasi, and M. Keramati, Wind erosion control of soils using polymeric materials. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 2012. 1(2): p. 81–86.
  6. Van Pelt, R. and T. Zobeck. Effect of polyacrylamide, cover crops, and crop residue management on wind erosion. in International Soil Conservation Organization Conference-Brisbane. 2004.
  7. Fryrear, D.W. and E. Skidmore, Methods for controlling wind erosion. Soil erosion and crop productivity, 198524: p. 443-457.
  8. Larsson, M., Dune: Arenaceous Anti-Desertification Architecture, in Macro-engineering Seawater in Unique Environments. 2010, Springer. p. 431-463.
  9. Meyer, F., et al., Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control, in Geo-frontiers 2011: advances in geotechnical engineering. 2011. p. 4002-4011.
  10. Maleki, M., et al., Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. International Journal of Environmental Science and Technology, 2016. 13(3): p. 937-944.
  11. Gomez, M.G., et al., Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2015. 168(3): p. 206-216.
  12. Chen, F., et al., Biostabilization of desert sands using bacterially induced calcite precipitation. Geomicrobiology Journal, 2016. 33(3-4): p. 243-249.
  13. Aghaalizadeh, S., et al., Improving the Stability of Sandy Soils by Using Urease Enzyme in Soybean Plants. Transportation Infrastructure Geotechnology, 2024. 11(6): p. 4275-4288.
  14. Almajed, A., et al., Mitigating wind erosion of sand using biopolymer-assisted EICP technique. Soils and Foundations, 2020. 60(2): p. 356-371.
  15. Kavazanjian, E. and N. Hamdan, Enzyme induced carbonate precipitation (EICP) columns for ground improvement, in IFCEE 2015. 2015. p. 2252-2261.
  16. Hamdan, N., et al., Hydrogel-assisted enzyme-induced carbonate mineral precipitation. Journal of Materials in Civil Engineering, 2016. 28(10): p. 04016089.
  17. Putra, H., H. Yasuhara, and N. Kinoshita, Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosciences, 2017. 7(3): p. 61.
  18. Oliveira, P.J.V., L.D. Freitas, and J.P. Carmona, Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. Journal of Materials in Civil Engineering, 2017. 29(4): p. 04016263.
  19. Kavazanjian Jr, E., A. Almajed, and N. Hamdan, Bio-inspired soil improvement using EICP soil columns and soil nails, in Grouting 2017. 2017. p. 13-22.
  20. Knorr, B., Enzyme-induced carbonate precipitation for the mitigation of fugitive dust. 2014: Arizona State University.
  21. Khodadadi Tirkolaei, H., et al., Crude urease extract for biocementation. Journal of Materials in Civil Engineering, 2020. 32(12): p. 04020374.
  22. Sun, X., et al., Mineralization crust field experiment for desert sand solidification based on enzymatic calcification. Journal of Environmental Management, 2021.278 : p. 112315.
  23. Wang, H., et al., Experimental study of enzyme-induced carbonate precipitation for high temperature applications by controlling enzyme activity. Geomicrobiology Journal, 2022. 39(6): p. 502-514.
  24. Wang, H., et al., Erosion resistance of treated dust soils based on the combined enzymatically induced carbonate precipitation and polyacrylic acid. Biogeotechnics, 2023. 1(4): p. 100050.
  25. Ahenkorah, I., et al., Characteristics of MICP-and EICP-treated sands in simple shear conditions: A benchmarking with the critical state of untreated sand. Géotechnique, 2023. 74(13): p. 1649-1663.
  26. Dilrukshi, R., K. Nakashima, and S. Kawasaki, Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils and foundations, 2018. 58(4): p. 894-910.
  27. Hamdan, N. and E. Kavazanjian Jr, Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique, 2016. 66(7): p. 546-555.
  28. Hoang, T., et al., Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP). Canadian Geotechnical Journal, 2019. 56(6): p. 808-822.
  29. Martin, K.K., T.H. Khodadadi, and E. Kavazanjian Jr. Enzyme-induced carbonate precipitation: Scale-up of bio-cemented soil columns. in Geo-Congress 2020. 2020. American Society of Civil Engineers Reston, VA.
  30. Rahman, M.M., et al. A potentially sustainable weed control method using urease enzymes extracted from weeds. in Proceedings of 22nd Australasian Weeds Conference. 2022.
  31. Yu, X., Laboratory and Field Testing in Support of Field Studies of Enzyme Induced Carbonate Precipitation (EICP) for Fugitive Dust Control. 2023, Arizona State University.
  32. Chu, J., et al., Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 2014. 9(2): p. 277-285.
  33. Deshmukh, R.K., J.F. Ma, and R.R. Bélanger, Role of silicon in plants. 2017, Frontiers Media SA. p. 1858.
  34. Nam, I.-H., et al., Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials. KSCE Journal of Civil Engineering, 2015. 19: p. 1620-1625.
  35. Gao, Y., et al., Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils and Foundations, 2019. 59(5): p. 1631-1637.
  36. Chen, Y., Y. Gao, and H. Guo, Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 2: Sand-geotextile capillary barrier effect. Transportation Geotechnics, 2021. 27: p. 100484.
  37. Lee, S. and J. Kim, An experimental study on enzymatic-induced carbonate precipitation using yellow soybeans for soil stabilization. KSCE Journal of Civil Engineering, 2020. 24(7): p. 2026-2037.
  38. Pratama, G.B.S., et al. Application of soybean powder as urease enzyme replacement on EICP method for soil improvement technique. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing.
  39. Yuan, H., et al., Experimental study of EICP combined with organic materials for silt improvement in the yellow river flood area. Applied Sciences, 2020. 10(21): p. 7678.
  40. Javadi, N., et al., EICP treatment of soil by using urease enzyme extracted from watermelon seeds, in IFCEE 2018. 2018. p. 115-124.