پوشش‌دهی سطوح با نانوکامپوزیت‌های پیشرفته: کاربردهای فوتوکاتالیستی در تخریب آلاینده‌های محیط زیستی برای محیط‌های شهری

نوع مقاله : مقاله مروری

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله چالش شدید آلودگی  هوا در کلان‌شهرهایی از جمله تهران و نیاز به استفاده از پوشش‌دهی  پیشرفته سطوح ساختمانی و شهری به منظور کاهش آلاینده‌ها، مورد بررسی قرار گرفته است‌. پوشش‌دهی سطوح با نانوکامپوزیت‌های پیشرفته و کاربردهای فوتوکاتالیستی آن‌ها در تخریب آلاینده‌های محیط زیستی به‌طور جامع تحلیل شده است‌. نانوکامپوزیت‌ها با ترکیب مواد مختلف، به‌ویژه اکسیدهای فلزی نیمه‌رسانا مانند TiO₂، ZnO و g-C3N4، قابلیت بالایی برای تجزیه میکروآلاینده‌ها و آلاینده‌های محیطی تحت تابش نور دارند. در این راستا، روش‌های مختلف پوشش‌دهی شامل اسپری کردن، الکتروفورتیک و الکتروریسی بررسی شده‌اند که هرکدام بسته به نیازهای خاص و شرایط محیطی، مزایای منحصر به‌فردی ارائه می‌دهند‌. علاوه بر این، ترکیب نانوذرات با دیگر مواد نوظهور مانند گرافن یا مکسین‌ها موجب بهبود عملکرد فوتوکاتالیستی، افزایش مقاومت در برابر خورندگی و پایداری طولانی‌مدت پوشش‌ها شده است و کارایی این پوشش‌ها رو بهبود بخشیده‌اند. همچنین، استفاده از تکنیک‌های نوآورانه نظیر فناوری پلاسما و الکتروشیمیایی در سنتز نانوکامپوزیت‌ها نقش مهمی در ارتقای کارایی این پوشش‌ها در تصفیه هوا و آب ایفا کرده است‌. بهره‌گیری از ویژگی‌های فوتوکاتالیستی این مواد با استفاده از انرژی خورشیدی و دیگر منابع تجدیدپذیر، به‌ویژه در محیط‌های شهری، می‌تواند به کاهش آلودگی هوا و ارتقای کیفیت زندگی در شهرها کمک شایانی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Surface Coating with Advanced Nanocomposites: Photocatalytic Applications in the Degradation of Environmental Pollutants for Urban Environments

نویسندگان [English]

  • Esmaeil Farmani Gheshlaghi 1
  • Fariborz Rashidi 1
  • Majid Abdouss 2
1 Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
2 Chemistry Department, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

This study addresses the critical issue of air pollution in major metropolitan areas, including Tehran, and emphasizes the need for advanced surface coating technologies to reduce environmental contaminants in urban settings. The paper provides a comprehensive analysis of surface coating with advanced nanocomposites and their photocatalytic applications for the degradation of environmental pollutants. Nanocomposites composed of various materials, particularly semiconductor metal oxides such as TiO₂, ZnO, and g-C₃N₄, demonstrate high efficiency in decomposing micro-pollutants and atmospheric contaminants under light irradiation. Several coating techniques, including spray coating, electrophoretic deposition, and electrospinning, are reviewed, each offering distinct advantages depending on specific environmental conditions and surface requirements. Moreover, the integration of nanomaterials with emerging components such as graphene and MXenes enhances photocatalytic performance, corrosion resistance, and long-term stability of the coatings. Innovative synthesis techniques, such as plasma-based and electrochemical methods, also play a significant role in improving the efficiency of these coatings for air and water purification. Harnessing the photocatalytic properties of these materials using solar and other renewable energy sources, particularly in urban environments, offers a promising pathway for reducing air pollution and improving urban living standards.

کلیدواژه‌ها [English]

  • Building Surface Coating
  • Advanced Materials Engineering
  • Micro-pollutants
  • Photocatalyst
  • Renewable Energy
[1] A. Rabajczyk, M. Zielecka, W. Klapsa, A. Dziechciarz, Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants, Materials, 14 (2021).
[2] T. Mata, A. Martins, C. Calheiros, F. Villanueva, N. Alonso-Cuevilla, M. Gabriel, G. Silva, Indoor Air Quality: A Review of Cleaning Technologies, Environments,  (2022).
[3] J. Bersch, I. Flores-Colen, A. Masuero, D.D. Molin, Photocatalytic TiO2-Based Coatings for Mortars on Facades: A Review of Efficiency, Durability, and Sustainability, Buildings,  (2023).
[4] B. Wu, C. Liu, Impacts of Building Environment and Urban Green Space Features on Urban Air Quality: Focusing on Interaction Effects and Nonlinearity, Buildings,  (2023).
[5] U.A. Mandi, U. Meda, K. Vora, Y. Athreya, Pollution Control Applications of Nano Titanium Dioxide in the Construction Industry, ECS Transactions,  (2022).
[6] J. Jonasson, C. Faith-Ell, I. Carlman, O. Englund, The environmental performance of zero-emission buildings in a fossil-free energy system, Energy Efficiency,  (2024).
[7] P. Haghighi, F. Haghighat, TiO2-based photocatalytic oxidation process for indoor air VOCs removal: A comprehensive review, Building and Environment, 249 (2024) 111108.
[8] B. Gandu, A. Rao, R. Cahan, Air pollution control by using different types of techniques and sorbents,  (2021) 575-594.
[9] X. Wu, Y. Zhang, F. Hou, H. Wang, J. Zhou, W. Yu, The energy and time saving coordinated control methods of CO2, VOCs, and PM2.5 in office buildings, PLoS ONE, 17 (2022).
[10] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere, 219 (2019) 804-825.
[11] J. Martínez-Montelongo, I. Medina-Ramírez, Y. Romo-Lozano, J. Zapien, Development of a sustainable photocatalytic process for air purification, Chemosphere, 257 (2020) 127236.
[12] P. Truong, A. Kidanemariam, J. Park, A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air, Journal of Industrial and Engineering Chemistry, 100 (2021) 19-39.
[13] V. Bui, T.N. Nguyen, V. Van Tran, J. Hur, I. Kim, D. Park, Y.-C. Lee, Photocatalytic materials for indoor air purification systems: An updated mini-review, Environmental Technology and Innovation, 22 (2021) 101471.
[14] F. He, W.-G. Jeon, W. Choi, Photocatalytic air purification mimicking the self-cleaning process of the atmosphere, Nature Communications, 12 (2021).
[15] M. Saeli, C. Piccirillo, D. Tobaldi, R. Binions, P. Castro, R. Pullar, A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin, Journal of Cleaner Production,  (2018).
[16] J. Wang, S. Liu, X. Meng, W. Gao, J. Yuan, Application of retro-reflective materials in urban buildings: A comprehensive review, Energy and Buildings, 247 (2021) 111137.
[17] H. Teixeira, M. Gomes, M. Rodrigues, J. Pereira, Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films, Building and Environment, 168 (2020) 106474.
[18] A. Velazquez-Palenzuela, K. Dam‐Johansen, J. Christensen, Benchmarking of photocatalytic coatings performance and their activation towards pollutants degradation, Progress in Organic Coatings, 147 (2020) 105856.
[19] T. Zhu, Y. Cheng, J. Huang, J. Xiong, M. Ge, J. Mao, Z. Liu, X. Dong, Z. Chen, Y. Lai, A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning, Chemical Engineering Journal,  (2020).
[20] S. Tian, Y. Feng, Z. Zheng, Z. He, TiO2-Based Photocatalytic Coatings on Glass Substrates for Environmental Applications, Coatings,  (2023).
[21] Y. Sakthivel, Urban Facades: Photocatalytic Building Envelope for Passive Remediation of Air Pollution,  (2019).
[22] E. Luévano-Hipólito, L. Torres-Martínez, L.V.F. Cantú-Castro, Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4, Construction and Building Materials,  (2019).
[23] In-situ Construction of TiO2/Ag Heterojunction Coating for Forming a Photocatalytic Self-cleaning Surface of Concrete, Global NEST: the international Journal,  (2024).
[24] N. Aghababaei, M. Abdouss, H. Hosseini-Monfared, F. Ghanbari, Enhanced photo-degradation of diclofenac using a new and effective composite (O-g-C3N4/TiO2/α-Fe2O3): Degradation pathway, toxicity evaluation and application for real matrix, Journal of Environmental Chemical Engineering, 11(5) (2023) 110477.
[25] R. Ghasemzadeh, K. Akhbari, S. Kawata, rGO/MUT-15 nanocomposite as a Fenton-like photocatalyst for the degradation of Acid Yellow 73 under visible light, Dalton transactions,  (2024).
[26] M. Zoric, P. Basera, L. Palmer, A. Aitbekova, N. Powers-Riggs, H. Lim, W. Hu, A. Garcia-Esparza, H. Sarker, F. Abild-Pedersen, H. Atwater, S. Cushing, M. Bajdich, A. Cordones, Oxidizing Role of Cu Cocatalysts in Unassisted Photocatalytic CO2 Reduction Using p-GaN/Al2O3/Au/Cu Heterostructures, ACS Nano, 18 (2024) 19538-19548.
[27] S. Gupta, R. Kumar, Enhanced photocatalytic performance of the N-rGO/g-C3N4 nanocomposite for efficient solar-driven water remediation, Nanoscale,  (2024).
[28] G. Petcu, E. Anghel, I. Atkinson, D. Culiță, N. Apostol, A. Kuncser, F. Papa, A. Baran, J. Blin, V. Parvulescu, Composite Photocatalysts with Fe, Co, and Ni Oxides on Supports with Tetracoordinated Ti Embedded into Aluminosilicate Gel during Zeolite Y Synthesis, Gels, 10 (2024).
[29] S. Ali, P.M. Ismail, M. Khan, A. Dang, S. Ali, A. Zada, F. Raziq, I. Khan, M. Khan, M. Ateeq, W. Khan, S.H. Bakhtiar, H. Ali, X. Wu, M.I.A. Shah, A. Vinu, J. Yi, P. Xia, L. Qiao, Charge transfer in TiO2-based photocatalysis: fundamental mechanisms to material strategies, Nanoscale,  (2024).
[30] G.S. Bisht, A. Singh, Hydrothermally Synthesized TiO2 Nanowires and Potential Application in Catalytic Degradation of p-Nitrophenol, Journal of Cluster Science,  (2024) 1-17.
[31] J. Rodrigues, T. Hatami, J.M. Rosa, E.B. Tambourgi, Photocatalytic degradation of Reactive Blue 21 dye using ZnO nanoparticles: experiment, modelling, and sensitivity analysis, Environmental technology, 42(23) (2021) 3675-3687.
[32] M. Faisal, M. Rashed, J. Ahmed, M. Alsaiari, M. Jalalah, S. Alsareii, F. Harraz, Au nanoparticles decorated polypyrrole-carbon black/g-C3N4 nanocomposite as ultrafast and efficient visible light photocatalyst, Chemosphere, 287 Pt 1 (2021) 131984.
[33] A.H. Monfared, M. Jamshidi, Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights, Progress in Organic Coatings,  (2019).
[34] M. Alenizi, R. Kumar, M. Aslam, F. Alseroury, M. Barakat, Construction of a ternary g-C3N4/TiO2@polyaniline nanocomposite for the enhanced photocatalytic activity under solar light, Scientific Reports, 9 (2019).
[35] T. Parangi, CNT/TiO2 nanocomposite for environmental remediation, International Journal of Materials Research, 115 (2024) 487-497.
[36] N. Sarkar, S. Mishra, V. Gadore, B. Panigrahi, M. Ahmaruzzaman, Nanocosmos of catalysis: a voyage through synthesis, properties, and enhanced photocatalytic degradation in nickel sulfide nanocomposites, Nanoscale Advances, 6 (2024) 2741-2765.
[37] B. De La Fuente, D. Khurana, P. Vereecken, A. Hubin, T. Hauffman, Nano-TiO2/TiN Systems for Electrocatalysis: Mapping the Changes in Energy Band Diagram across the Semiconductor|Current Collector Interface and the Study of Effects of TiO2 Electrochemical Reduction Using UV Photoelectron Spectroscopy, ACS applied materials & interfaces,  (2024).
[38] R. Ghamarpoor, A. Fallah, M. Jamshidi, A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2-Based Photocatalysts for Photodegradation of Contaminants, ACS Omega, 9 (2024) 25457-25492.
[39] P. Thuy, B.T.C. Hue, N.X. Sang, L.P. Lieu, L.T.T. Thuy, Synthesis of ZnO-TiO2-WO3 tertiary heterojunction for improved photocatalytic degradation of dyes using visible light, Materials Research Express,  (2024).
[40] L. Wen, B. Liu, Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO2 and the effect on isopropanol dehydrogenation under gaseous conditions, Physical chemistry chemical physics : PCCP,  (2024).
[41] A. Esbergenova, M. Hojamberdiev, S. Mamatkulov, R. Jalolov, D. Kong, O. Ruzimuradov, U. Shaislamov, Correlating Cu dopant concentration, optoelectronic properties, and photocatalytic activity of ZnO nanostructures: experimental and theoretical insights, Nanotechnology,  (2024).
[42] Y. K, Role of Nanoparticle Size in the Photocatalytic Degradation of Pollutants, Journal of Chemistry,  (2024).
[43] K. Ni, Y. Chen, R. Xu, Y. Zhao, M. Guo, Mapping Photogenerated Electron–Hole Behavior of Graphene Oxide: Insight into a New Mechanism of Photosensitive Pollutant Degradation, Molecules, 29 (2024).
[44] L. Wang, J. Deng, S. Bai, Y. Wu, W. Zhu, Enhanced Photocatalytic Degradation Performance by Micropore-Confined Charge Transfer in Hydrogen-Bonded Organic Framework-Like Cocrystals, Small,  (2024).
[45] A.A. Miad, S.P. Saikat, M.K. Alam, M.S. Hossain, N. Bahadur, S. Ahmed, Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review, Nanoscale Advances, 6 (2024) 4781-4803.
[46] C.-Y. Hsu, Z.H. Mahmoud, S. Abdullaev, F.K. Ali, Y. Ali Naeem, R. Mzahim Mizher, M. Morad Karim, A.S. Abdulwahid, Z. Ahmadi, S. Habibzadeh, E. kianfar, Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications, Case Studies in Chemical and Environmental Engineering, 9 (2024) 100626.
[47] C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies, Chemical Engineering Journal Advances, 10 (2022) 100262.
[48] Y. Wei, H. Meng, Q. Wu, X. Bai, Y. Zhang, TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review, Catalysts, 13(12) (2023) 1466.
[49] L. Hamza, S. Laouini, H. Mohammed, S. Meneceur, C. Salmi, F. Alharthi, S. Legmairi, J.A.A. Abdullah, Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes, Zeitschrift für Physikalische Chemie, 0 (2024).
[50] O. Saber, M. Osama, A. Alshoaibi, N. Shaalan, Osama, Designing inorganic–magnetic–organic nanohybrids for producing effective photocatalysts for the purification of water, RSC Advances, 12 (2022) 18282-18295.
[51] S. Hamood, M. Khalaf, F. Mohammed, Synthesis, structural, and optical characterizations of zinc oxide: silver oxide nanoparticles conjunction with polymer polyvinylpyrrolidone, Digest Journal of Nanomaterials and Biostructures,  (2024).
[52] J. Chang, C. Saint, C. Chow, D. Bahnemann, M.N. Chong, Recent innovations in engineering Zinc Oxide (ZnO) nanostructures for water and wastewater treatment: Pushing the boundaries of multifunctional photocatalytic and advanced biotechnological applications, International Materials Reviews,  (2024).
[53] W. Xia, X. Li, M. Cheng, W. Xiong, B. Song, Y. Liu, Y. Yang, W. Wang, S. Chen, G. Zeng, C. Zhou, Recent Advances in Constructing Three-Dimensional Graphitic Carbon Nitride Based Materials and Their Applications in Environmental Photocatalysis, Photo-Electrochemistry, and Electrochemistry, Journal of Environmental Informatics,  (2024).
[54] D. Zhou, D. Li, Z. Chen, Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts, Frontiers in Chemistry, 12 (2024).
[55] M. Ahmed, S. Mahmoud, A. Mohamed, Unveiling the photocatalytic potential of graphitic carbon nitride (g-C3N4): a state-of-the-art review, RSC Advances, 14 (2024) 25629-25662.
[56] M. Zhou, H. Ou, S. Li, X. Qin, Y. Fang, S.-C. Lee, X. Wang, W. Ho, Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides, Advanced Science, 8 (2021).
[57] N. Subha, L.R. Nagappagari, R. Sankar, A review on recent advances in g-C3N4-MXene nanocomposites for photocatalytic applications, Nanotechnology,  (2024).
[58] Z. Yang, J. Wang, Highly Efficient Photocatalytic H2O2 Production over a Zn0.3Cd0.7S/MXene Photocatalyst for Degradation of Emerging Pollutants under Visible-Light Irradiation, Langmuir : the ACS journal of surfaces and colloids,  (2024).
[59] Y. Li, F. Chen, W. Yang, S. Ke, A wide angle broadband solar absorber with a horizontal multi-cylinder structure based on an MXene material, Physical chemistry chemical physics : PCCP,  (2024).
[60] Z. Wang, Q. Gao, H. Luo, H. Fan, Y. Chen, J. Xiang, In situ synthesis of reduced graphene oxide/SnIn4S8 nanocomposites with enhanced photocatalytic performance for pollutant degradation, Nanotechnology Reviews, 13 (2024).
[61] A. Kadian, V. Manikandan, C. Chen, C. Dong, S. Annapoorni, Synergistically enhanced photocatalytic properties of Co3O4-G/GO nanocomposites: unravelling their interactions and charge-transfer dynamics using XAS, Dalton transactions,  (2024).
[62] L. Yang, C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, X. Xu, X. Chen, D. Sun, Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation, Journal of colloid and interface science, 562 (2019) 21-28.
[63] H. Zhang, M. Li, W. Wang, G. Zhang, Q. Tang, J. Cao, Designing 3D porous BiOI/Ti3C2 nanocomposite as a superior coating photocatalyst for photodegradation RhB and photoreduction Cr (VI), Separation and Purification Technology, 272 (2021) 118911.
[64] M. Dell’Edera, C. Lo Porto, I. De Pasquale, F. Petronella, M. Curri, A. Agostiano, R. Comparelli, Photocatalytic TiO2-based coatings for environmental applications, Catalysis Today,  (2021).
[65] M. Janus, J. Strzałkowski, K. Zając, E. Kusiak-Nejman, Cement Clinker Modified by Photocatalyst—Selected Mechanical Properties and Photocatalytic Activity during NO and BTEX Decomposition, Applied Sciences,  (2024).
[66] L. Xiao, T. Lei, Y. Wang, Z. Duan, M. Gao, D. Jiang, Preparation and properties study of straw fiber cement-based composite boards with efficient formaldehyde purification function, Journal of Reinforced Plastics and Composites,  (2024).
[67] T. Ovari, B. Trufán, G. Katona, G. Szabó, L. Muresan, Correlations between the anti-corrosion properties and the photocatalytic behavior of epoxy coatings incorporating modified graphene oxide deposited on a zinc substrate, RSC Advances, 14 (2024) 10826-10841.
[68] Z. Wang, X. Zhou, Y. Shang, B. Wang, K. Lu, W. Gan, H. Lai, J. Wang, C. Huang, Z. Chen, C. Hao, E. Feng, J. Li, Synthesis and Characterization of Superhydrophobic Epoxy Resin Coating with SiO2@CuO/HDTMS for Enhanced Self-Cleaning, Photocatalytic, and Corrosion-Resistant Properties, Materials, 17 (2024).
[69] A. Bernal-Díaz, A. Hernández-Gordillo, J.C. Alonso, S. Rodil, M. Bizarro, Strong thickness dependence in thin film photocatalytic heterojunctions: the ZnO-Bi2O3 case study, Dalton transactions,  (2024).
[70] H.N. Le, H.D. Nguyen, M. Hieu, T.M.H. Nguyen, T.D. Nguyen, T.B.T. Dao, D. Dinh, C. Thuc, Melt processing of graphene-coated polylactide granules for producing biodegradable nanocomposite with higher mechanical strength, Polymer-Plastics Technology and Materials, 63 (2024) 1421-1437.
[71] P. Chaudhary, U. Gaur, A.P. Mobarsa, K. Chaudhary, Thermal Spray Coating Applications in Tribology: Recent Case Studies, Journal of Thermal Spray and Engineering,  (2024).
[72] S. Lederer, S. Benfer, J. Bloh, R. Javed, A. Pashkova, W. Fuerbeth, Development of Photocatalytically Active Anodized Layers by a Modified Phosphoric Acid Anodizing Process for Air Purification, Corrosion and Materials Degradation,  (2022).
[73] M.A. Busharat, S. Shukrullah, M.Y. Naz, Y. Khan, A. Ibrahim, A. Al-Arainy, M. Shoaib, Study of Cation Distribution and Photocatalytic Activity of Nonthermal Plasma-Modified NiZnFe2O4 Magnetic Nanocomposites, ACS Omega, 9 (2024) 14791-14804.
[74] E. Abdel-Fattah, Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis, Crystals,  (2024).
[75] A. Al Hunaiti, M. Hamideh, R. Al-Shawabkeh, Magnetic nanoparticles of TiO2-NiFe2O4-Chitosan for photocatalytic degradation: synthesis, characterization, methyl blue dye-VOCs wastewater treatment, kinetic experimental, and theoretical studies, Emergent Materials,  (2024) 1-16.
[76] R. Rega, A. Fioravanti, H. Hejazi, M. Shahrezaei, Š. Kment, P. Maddalena, A. Naldoni, S. Lettieri, Charge carrier recombination processes, intragap defect states, and photoluminescence mechanisms in stoichiometric and reduced TiO2 brookite nanorods: an interpretation scheme through in situ photoluminescence excitation spectroscopy in controlled environment, Nanoscale,  (2024).
[77] P. George, P. Chowdhury, Complex dielectric transformation of UV-vis diffuse reflectance spectra for estimating optical band-gap energies and materials classification, The Analyst, 144 9 (2019) 3005-3012.
[78] M. Zhu, C. Zhai, S. Kim, M. Fujitsuka, T. Majima, Monitoring Transport Behavior of Charge Carriers in a Single CdS@CuS Nanowire via In Situ Single-Particle Photoluminescence Spectroscopy, The journal of physical chemistry letters,  (2019) 4017-4024.
[79] Q. Sun, Y. Zhao, F. Qin, J. Zhang, B. Wang, H. Ye, J. Sheng, Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution, Nanotechnology, 32 (2020).
[80] E. Gomes, L. Gracia, A. Santiago, R. Tranquilin, F. Motta, R. Amoresi, E. Longo, M. Bomio, J. Andrés, Structure, electronic properties, morphology evolution, and photocatalytic activity in PbMoO4 and Pb1-2xCaxSrxMoO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions, Physical chemistry chemical physics : PCCP,  (2020).
[81] E. Karacaoglu, O. Yildirim, T. Ozturk, M. Gul, Effect of lanthanum doping on structural, optical, and photocatalytic properties of YVO4, Journal of Materials Research, 38 (2023) 3536-3547.
[82] V.-A. Surdu, R. Győrgy, X-ray Diffraction Data Analysis by Machine Learning Methods—A Review, Applied Sciences,  (2023).
[83] A. Tiwari, Advancement of Materials to Sustainable & Green World, Advanced Materials Letters,  (2023).
[84] D. Vadivel, S. Suryakumar, C. Casella, A. Speltini, D. Dondi, Advancements in Materials Science and Photocatalysts for Sustainable Development, Catalysts,  (2024).
[85] D.G. Rivas, K.-H. Kim, O.-K. Im, C. Wu, A Photocatalytic Building Façade for Improving Urban Air Quality, Empower,  (2022).
[86] Q. Geng, H. Wang, R. Chen, L. Chen, K. Li, F. Dong, Advances and challenges of photocatalytic technology for air purification, National Science Open,  (2022).
[87] C. Pei, J.-H. Zhu, F. Xing, Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method, Journal of Cleaner Production,  (2021).
[88] M. Pivert, O. Kerivel, B. Zerelli, Y. Leprince-Wang, ZnO nanostructures based innovative photocatalytic road for air purification, Journal of Cleaner Production, 318 (2021) 128447.
[89] F. He, W. Jeon, W. Choi, Photocatalytic air purification mimicking the self-cleaning process of the atmosphere, Nature Communications, 12(1) (2021) 2528.
[90] C. Ayappan, S.K. Kannan, T. Ochiai, X. Zhang, R. Xing, S. Liu, A. Fujishima, Commercialization aspects for TiO<sub>2</sub>-based indoor air purification, Trends in Chemistry, 7(3) (2025) 134-148.
[91] S. Mansouri, A. Rahai, S.H. Rashedi, F. Moghadas Nejad, Predicting Concrete Carbonation Depth and Investigating the Influencing Factors through Machine Learning Approaches and Optimization, Amirkabir Journal of Civil Engineering, 56(12) (2025) 1583-1604.
[92] F. Salvadores, M. Reli, O.M. Alfano, K. Kočí, M.d.l.M. Ballari, Efficiencies Evaluation of Photocatalytic Paints Under Indoor and Outdoor Air Conditions, Frontiers in Chemistry, 8 (2020).
[93] Y. Wu, P. Krishnan, M.-H. Zhang, L. Yu, Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings, Energy and Buildings, 164 (2018) 176-186.
[94] J. Yang, D.L.M. Kumar, A. Pyrgou, A. Chong, M. Santamouris, D. Kolokotsa, S. Lee, Green and cool roofs’ urban heat island mitigation potential in tropical climate, Solar Energy,  (2018).
[95] A.M.M. Irfeey, H. Chau, M. Sumaiya, C.Y. Wai, N. Muttil, E. Jamei, Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas, Sustainability,  (2023).
[96] D. Kotzias, Photo-Induced Degradation of Priority Air Pollutants on TiO2-Based Coatings in Indoor and Outdoor Environments—A Mechanistic View of the Processes at the Air/Catalyst Interface, Crystals,  (2024).
[97] D.M. Degefu, Z. Liao, Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors, Journal of Sol-Gel Science and Technology, 98 (2021) 605-614.
[98] Y. Yang, T. Ji, Y. Lin, W. Su, Effect of adhesive on photocatalytic NOx removal and stability over polymeric carbon nitride coated cement mortars, Journal of Cleaner Production, 295 (2021) 126458.
[99] Y. Ji, A. Mattsson, G. Niklasson, C. Granqvist, L. Österlund, Synergistic TiO2/VO2 Window Coating with Thermochromism, Enhanced Luminous Transmittance, and Photocatalytic Activity, Joule,  (2019).
[100] I. Hernández-Pérez, Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in Mexico, Applied Sciences, 11 (2021) 3263.
[101] Q. Maqbool, O. Favoni, T. Wicht, N. Lasemi, S. Sabbatini, M. Stöger-Pollach, M. Ruello, F. Tittarelli, G. Rupprechter, Highly Stable Self-Cleaning Paints Based on Waste-Valorized PNC-Doped TiO2 Nanoparticles, ACS Catalysis, 14 (2024) 4820-4834.
[102] M. Hassnain, A. Ali, M.R. Azhar, A. Abutaleb, M. Mubashir, Challenges and Perspectives on Photocatalytic Membrane Reactors for Volatile Organic Compounds Degradation and Nitrogen Oxides Treatment, Global Challenges, 9(5) (2025) 2500035.
[103] J. Yu, Y. Xuan, SiO2–TiO2 Nanoparticle Aqueous Foam for Volatile Organic Compounds’ Suppression, Toxics, 12 (2024).
[104] A. Ghaffar, I.A. Channa, A. Chandio, Mitigating UV-Induced Degradation in Solar Panels through ZnO Nanocomposite Coatings, Sustainability,  (2024).
[105] M. Li, C. Qiu, S. Dogel, P. Chen, D. Perovic, J. Howe, Microstructure-Dependent Thermal Stability of Super-Tetragonal Nanocomposite Films through In Situ TEM/EELS Study, ACS applied materials & interfaces,  (2022).
[106] A. Fadl, M. Abdou, M. Hamza, S. Sadeek, Corrosion-inhibiting, self-healing, mechanical-resistant, chemically and UV stable PDMAS/TiO2 epoxy hybrid nanocomposite coating for steel petroleum tanker trucks, Progress in Organic Coatings, 146 (2020) 105715.
[107] C. Liu, W. Wang, Analysis of degradation effect of carbon nitride nanomaterials in pollutant treatment, Applied Mathematics and Nonlinear Sciences,  (2024).
[108] M. Ghanbari, M. Salavati‐Niasari, Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities, Ecotoxicology and environmental safety, 208 (2021) 111712.
[109] M. Ghodrati, M. Mousavi-Kamazani, Z. Bahrami, Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces, Scientific Reports, 13(1) (2023) 548.
[110] C. Chang, S. Rad, L. Gan, Z. Li, J. Dai, A. Shahab, Review of the sol–gel method in preparing nano TiO2 for advanced oxidation process, Nanotechnology Reviews, 12(1) (2023).