[1] A. Rabajczyk, M. Zielecka, W. Klapsa, A. Dziechciarz, Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants, Materials, 14 (2021).
[2] T. Mata, A. Martins, C. Calheiros, F. Villanueva, N. Alonso-Cuevilla, M. Gabriel, G. Silva, Indoor Air Quality: A Review of Cleaning Technologies, Environments, (2022).
[3] J. Bersch, I. Flores-Colen, A. Masuero, D.D. Molin, Photocatalytic TiO2-Based Coatings for Mortars on Facades: A Review of Efficiency, Durability, and Sustainability, Buildings, (2023).
[4] B. Wu, C. Liu, Impacts of Building Environment and Urban Green Space Features on Urban Air Quality: Focusing on Interaction Effects and Nonlinearity, Buildings, (2023).
[5] U.A. Mandi, U. Meda, K. Vora, Y. Athreya, Pollution Control Applications of Nano Titanium Dioxide in the Construction Industry, ECS Transactions, (2022).
[6] J. Jonasson, C. Faith-Ell, I. Carlman, O. Englund, The environmental performance of zero-emission buildings in a fossil-free energy system, Energy Efficiency, (2024).
[7] P. Haghighi, F. Haghighat, TiO2-based photocatalytic oxidation process for indoor air VOCs removal: A comprehensive review, Building and Environment, 249 (2024) 111108.
[8] B. Gandu, A. Rao, R. Cahan, Air pollution control by using different types of techniques and sorbents, (2021) 575-594.
[9] X. Wu, Y. Zhang, F. Hou, H. Wang, J. Zhou, W. Yu, The energy and time saving coordinated control methods of CO2, VOCs, and PM2.5 in office buildings, PLoS ONE, 17 (2022).
[10] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere, 219 (2019) 804-825.
[11] J. Martínez-Montelongo, I. Medina-Ramírez, Y. Romo-Lozano, J. Zapien, Development of a sustainable photocatalytic process for air purification, Chemosphere, 257 (2020) 127236.
[12] P. Truong, A. Kidanemariam, J. Park, A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air, Journal of Industrial and Engineering Chemistry, 100 (2021) 19-39.
[13] V. Bui, T.N. Nguyen, V. Van Tran, J. Hur, I. Kim, D. Park, Y.-C. Lee, Photocatalytic materials for indoor air purification systems: An updated mini-review, Environmental Technology and Innovation, 22 (2021) 101471.
[14] F. He, W.-G. Jeon, W. Choi, Photocatalytic air purification mimicking the self-cleaning process of the atmosphere, Nature Communications, 12 (2021).
[15] M. Saeli, C. Piccirillo, D. Tobaldi, R. Binions, P. Castro, R. Pullar, A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin, Journal of Cleaner Production, (2018).
[16] J. Wang, S. Liu, X. Meng, W. Gao, J. Yuan, Application of retro-reflective materials in urban buildings: A comprehensive review, Energy and Buildings, 247 (2021) 111137.
[17] H. Teixeira, M. Gomes, M. Rodrigues, J. Pereira, Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films, Building and Environment, 168 (2020) 106474.
[18] A. Velazquez-Palenzuela, K. Dam‐Johansen, J. Christensen, Benchmarking of photocatalytic coatings performance and their activation towards pollutants degradation, Progress in Organic Coatings, 147 (2020) 105856.
[19] T. Zhu, Y. Cheng, J. Huang, J. Xiong, M. Ge, J. Mao, Z. Liu, X. Dong, Z. Chen, Y. Lai, A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning, Chemical Engineering Journal, (2020).
[20] S. Tian, Y. Feng, Z. Zheng, Z. He, TiO2-Based Photocatalytic Coatings on Glass Substrates for Environmental Applications, Coatings, (2023).
[21] Y. Sakthivel, Urban Facades: Photocatalytic Building Envelope for Passive Remediation of Air Pollution, (2019).
[22] E. Luévano-Hipólito, L. Torres-Martínez, L.V.F. Cantú-Castro, Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4, Construction and Building Materials, (2019).
[23] In-situ Construction of TiO2/Ag Heterojunction Coating for Forming a Photocatalytic Self-cleaning Surface of Concrete, Global NEST: the international Journal, (2024).
[24] N. Aghababaei, M. Abdouss, H. Hosseini-Monfared, F. Ghanbari, Enhanced photo-degradation of diclofenac using a new and effective composite (O-g-C3N4/TiO2/α-Fe2O3): Degradation pathway, toxicity evaluation and application for real matrix, Journal of Environmental Chemical Engineering, 11(5) (2023) 110477.
[25] R. Ghasemzadeh, K. Akhbari, S. Kawata, rGO/MUT-15 nanocomposite as a Fenton-like photocatalyst for the degradation of Acid Yellow 73 under visible light, Dalton transactions, (2024).
[26] M. Zoric, P. Basera, L. Palmer, A. Aitbekova, N. Powers-Riggs, H. Lim, W. Hu, A. Garcia-Esparza, H. Sarker, F. Abild-Pedersen, H. Atwater, S. Cushing, M. Bajdich, A. Cordones, Oxidizing Role of Cu Cocatalysts in Unassisted Photocatalytic CO2 Reduction Using p-GaN/Al2O3/Au/Cu Heterostructures, ACS Nano, 18 (2024) 19538-19548.
[27] S. Gupta, R. Kumar, Enhanced photocatalytic performance of the N-rGO/g-C3N4 nanocomposite for efficient solar-driven water remediation, Nanoscale, (2024).
[28] G. Petcu, E. Anghel, I. Atkinson, D. Culiță, N. Apostol, A. Kuncser, F. Papa, A. Baran, J. Blin, V. Parvulescu, Composite Photocatalysts with Fe, Co, and Ni Oxides on Supports with Tetracoordinated Ti Embedded into Aluminosilicate Gel during Zeolite Y Synthesis, Gels, 10 (2024).
[29] S. Ali, P.M. Ismail, M. Khan, A. Dang, S. Ali, A. Zada, F. Raziq, I. Khan, M. Khan, M. Ateeq, W. Khan, S.H. Bakhtiar, H. Ali, X. Wu, M.I.A. Shah, A. Vinu, J. Yi, P. Xia, L. Qiao, Charge transfer in TiO2-based photocatalysis: fundamental mechanisms to material strategies, Nanoscale, (2024).
[30] G.S. Bisht, A. Singh, Hydrothermally Synthesized TiO2 Nanowires and Potential Application in Catalytic Degradation of p-Nitrophenol, Journal of Cluster Science, (2024) 1-17.
[31] J. Rodrigues, T. Hatami, J.M. Rosa, E.B. Tambourgi, Photocatalytic degradation of Reactive Blue 21 dye using ZnO nanoparticles: experiment, modelling, and sensitivity analysis, Environmental technology, 42(23) (2021) 3675-3687.
[32] M. Faisal, M. Rashed, J. Ahmed, M. Alsaiari, M. Jalalah, S. Alsareii, F. Harraz, Au nanoparticles decorated polypyrrole-carbon black/g-C3N4 nanocomposite as ultrafast and efficient visible light photocatalyst, Chemosphere, 287 Pt 1 (2021) 131984.
[33] A.H. Monfared, M. Jamshidi, Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights, Progress in Organic Coatings, (2019).
[34] M. Alenizi, R. Kumar, M. Aslam, F. Alseroury, M. Barakat, Construction of a ternary g-C3N4/TiO2@polyaniline nanocomposite for the enhanced photocatalytic activity under solar light, Scientific Reports, 9 (2019).
[35] T. Parangi, CNT/TiO2 nanocomposite for environmental remediation, International Journal of Materials Research, 115 (2024) 487-497.
[36] N. Sarkar, S. Mishra, V. Gadore, B. Panigrahi, M. Ahmaruzzaman, Nanocosmos of catalysis: a voyage through synthesis, properties, and enhanced photocatalytic degradation in nickel sulfide nanocomposites, Nanoscale Advances, 6 (2024) 2741-2765.
[37] B. De La Fuente, D. Khurana, P. Vereecken, A. Hubin, T. Hauffman, Nano-TiO2/TiN Systems for Electrocatalysis: Mapping the Changes in Energy Band Diagram across the Semiconductor|Current Collector Interface and the Study of Effects of TiO2 Electrochemical Reduction Using UV Photoelectron Spectroscopy, ACS applied materials & interfaces, (2024).
[38] R. Ghamarpoor, A. Fallah, M. Jamshidi, A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2-Based Photocatalysts for Photodegradation of Contaminants, ACS Omega, 9 (2024) 25457-25492.
[39] P. Thuy, B.T.C. Hue, N.X. Sang, L.P. Lieu, L.T.T. Thuy, Synthesis of ZnO-TiO2-WO3 tertiary heterojunction for improved photocatalytic degradation of dyes using visible light, Materials Research Express, (2024).
[40] L. Wen, B. Liu, Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO2 and the effect on isopropanol dehydrogenation under gaseous conditions, Physical chemistry chemical physics : PCCP, (2024).
[41] A. Esbergenova, M. Hojamberdiev, S. Mamatkulov, R. Jalolov, D. Kong, O. Ruzimuradov, U. Shaislamov, Correlating Cu dopant concentration, optoelectronic properties, and photocatalytic activity of ZnO nanostructures: experimental and theoretical insights, Nanotechnology, (2024).
[42] Y. K, Role of Nanoparticle Size in the Photocatalytic Degradation of Pollutants, Journal of Chemistry, (2024).
[43] K. Ni, Y. Chen, R. Xu, Y. Zhao, M. Guo, Mapping Photogenerated Electron–Hole Behavior of Graphene Oxide: Insight into a New Mechanism of Photosensitive Pollutant Degradation, Molecules, 29 (2024).
[44] L. Wang, J. Deng, S. Bai, Y. Wu, W. Zhu, Enhanced Photocatalytic Degradation Performance by Micropore-Confined Charge Transfer in Hydrogen-Bonded Organic Framework-Like Cocrystals, Small, (2024).
[45] A.A. Miad, S.P. Saikat, M.K. Alam, M.S. Hossain, N. Bahadur, S. Ahmed, Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review, Nanoscale Advances, 6 (2024) 4781-4803.
[46] C.-Y. Hsu, Z.H. Mahmoud, S. Abdullaev, F.K. Ali, Y. Ali Naeem, R. Mzahim Mizher, M. Morad Karim, A.S. Abdulwahid, Z. Ahmadi, S. Habibzadeh, E. kianfar, Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications, Case Studies in Chemical and Environmental Engineering, 9 (2024) 100626.
[47] C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies, Chemical Engineering Journal Advances, 10 (2022) 100262.
[48] Y. Wei, H. Meng, Q. Wu, X. Bai, Y. Zhang, TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review, Catalysts, 13(12) (2023) 1466.
[49] L. Hamza, S. Laouini, H. Mohammed, S. Meneceur, C. Salmi, F. Alharthi, S. Legmairi, J.A.A. Abdullah, Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes, Zeitschrift für Physikalische Chemie, 0 (2024).
[50] O. Saber, M. Osama, A. Alshoaibi, N. Shaalan, Osama, Designing inorganic–magnetic–organic nanohybrids for producing effective photocatalysts for the purification of water, RSC Advances, 12 (2022) 18282-18295.
[51] S. Hamood, M. Khalaf, F. Mohammed, Synthesis, structural, and optical characterizations of zinc oxide: silver oxide nanoparticles conjunction with polymer polyvinylpyrrolidone, Digest Journal of Nanomaterials and Biostructures, (2024).
[52] J. Chang, C. Saint, C. Chow, D. Bahnemann, M.N. Chong, Recent innovations in engineering Zinc Oxide (ZnO) nanostructures for water and wastewater treatment: Pushing the boundaries of multifunctional photocatalytic and advanced biotechnological applications, International Materials Reviews, (2024).
[53] W. Xia, X. Li, M. Cheng, W. Xiong, B. Song, Y. Liu, Y. Yang, W. Wang, S. Chen, G. Zeng, C. Zhou, Recent Advances in Constructing Three-Dimensional Graphitic Carbon Nitride Based Materials and Their Applications in Environmental Photocatalysis, Photo-Electrochemistry, and Electrochemistry, Journal of Environmental Informatics, (2024).
[54] D. Zhou, D. Li, Z. Chen, Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts, Frontiers in Chemistry, 12 (2024).
[55] M. Ahmed, S. Mahmoud, A. Mohamed, Unveiling the photocatalytic potential of graphitic carbon nitride (g-C3N4): a state-of-the-art review, RSC Advances, 14 (2024) 25629-25662.
[56] M. Zhou, H. Ou, S. Li, X. Qin, Y. Fang, S.-C. Lee, X. Wang, W. Ho, Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides, Advanced Science, 8 (2021).
[57] N. Subha, L.R. Nagappagari, R. Sankar, A review on recent advances in g-C3N4-MXene nanocomposites for photocatalytic applications, Nanotechnology, (2024).
[58] Z. Yang, J. Wang, Highly Efficient Photocatalytic H2O2 Production over a Zn0.3Cd0.7S/MXene Photocatalyst for Degradation of Emerging Pollutants under Visible-Light Irradiation, Langmuir : the ACS journal of surfaces and colloids, (2024).
[59] Y. Li, F. Chen, W. Yang, S. Ke, A wide angle broadband solar absorber with a horizontal multi-cylinder structure based on an MXene material, Physical chemistry chemical physics : PCCP, (2024).
[60] Z. Wang, Q. Gao, H. Luo, H. Fan, Y. Chen, J. Xiang, In situ synthesis of reduced graphene oxide/SnIn4S8 nanocomposites with enhanced photocatalytic performance for pollutant degradation, Nanotechnology Reviews, 13 (2024).
[61] A. Kadian, V. Manikandan, C. Chen, C. Dong, S. Annapoorni, Synergistically enhanced photocatalytic properties of Co3O4-G/GO nanocomposites: unravelling their interactions and charge-transfer dynamics using XAS, Dalton transactions, (2024).
[62] L. Yang, C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, X. Xu, X. Chen, D. Sun, Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation, Journal of colloid and interface science, 562 (2019) 21-28.
[63] H. Zhang, M. Li, W. Wang, G. Zhang, Q. Tang, J. Cao, Designing 3D porous BiOI/Ti3C2 nanocomposite as a superior coating photocatalyst for photodegradation RhB and photoreduction Cr (VI), Separation and Purification Technology, 272 (2021) 118911.
[64] M. Dell’Edera, C. Lo Porto, I. De Pasquale, F. Petronella, M. Curri, A. Agostiano, R. Comparelli, Photocatalytic TiO2-based coatings for environmental applications, Catalysis Today, (2021).
[65] M. Janus, J. Strzałkowski, K. Zając, E. Kusiak-Nejman, Cement Clinker Modified by Photocatalyst—Selected Mechanical Properties and Photocatalytic Activity during NO and BTEX Decomposition, Applied Sciences, (2024).
[66] L. Xiao, T. Lei, Y. Wang, Z. Duan, M. Gao, D. Jiang, Preparation and properties study of straw fiber cement-based composite boards with efficient formaldehyde purification function, Journal of Reinforced Plastics and Composites, (2024).
[67] T. Ovari, B. Trufán, G. Katona, G. Szabó, L. Muresan, Correlations between the anti-corrosion properties and the photocatalytic behavior of epoxy coatings incorporating modified graphene oxide deposited on a zinc substrate, RSC Advances, 14 (2024) 10826-10841.
[68] Z. Wang, X. Zhou, Y. Shang, B. Wang, K. Lu, W. Gan, H. Lai, J. Wang, C. Huang, Z. Chen, C. Hao, E. Feng, J. Li, Synthesis and Characterization of Superhydrophobic Epoxy Resin Coating with SiO2@CuO/HDTMS for Enhanced Self-Cleaning, Photocatalytic, and Corrosion-Resistant Properties, Materials, 17 (2024).
[69] A. Bernal-Díaz, A. Hernández-Gordillo, J.C. Alonso, S. Rodil, M. Bizarro, Strong thickness dependence in thin film photocatalytic heterojunctions: the ZnO-Bi2O3 case study, Dalton transactions, (2024).
[70] H.N. Le, H.D. Nguyen, M. Hieu, T.M.H. Nguyen, T.D. Nguyen, T.B.T. Dao, D. Dinh, C. Thuc, Melt processing of graphene-coated polylactide granules for producing biodegradable nanocomposite with higher mechanical strength, Polymer-Plastics Technology and Materials, 63 (2024) 1421-1437.
[71] P. Chaudhary, U. Gaur, A.P. Mobarsa, K. Chaudhary, Thermal Spray Coating Applications in Tribology: Recent Case Studies, Journal of Thermal Spray and Engineering, (2024).
[72] S. Lederer, S. Benfer, J. Bloh, R. Javed, A. Pashkova, W. Fuerbeth, Development of Photocatalytically Active Anodized Layers by a Modified Phosphoric Acid Anodizing Process for Air Purification, Corrosion and Materials Degradation, (2022).
[73] M.A. Busharat, S. Shukrullah, M.Y. Naz, Y. Khan, A. Ibrahim, A. Al-Arainy, M. Shoaib, Study of Cation Distribution and Photocatalytic Activity of Nonthermal Plasma-Modified NiZnFe2O4 Magnetic Nanocomposites, ACS Omega, 9 (2024) 14791-14804.
[74] E. Abdel-Fattah, Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis, Crystals, (2024).
[75] A. Al Hunaiti, M. Hamideh, R. Al-Shawabkeh, Magnetic nanoparticles of TiO2-NiFe2O4-Chitosan for photocatalytic degradation: synthesis, characterization, methyl blue dye-VOCs wastewater treatment, kinetic experimental, and theoretical studies, Emergent Materials, (2024) 1-16.
[76] R. Rega, A. Fioravanti, H. Hejazi, M. Shahrezaei, Š. Kment, P. Maddalena, A. Naldoni, S. Lettieri, Charge carrier recombination processes, intragap defect states, and photoluminescence mechanisms in stoichiometric and reduced TiO2 brookite nanorods: an interpretation scheme through in situ photoluminescence excitation spectroscopy in controlled environment, Nanoscale, (2024).
[77] P. George, P. Chowdhury, Complex dielectric transformation of UV-vis diffuse reflectance spectra for estimating optical band-gap energies and materials classification, The Analyst, 144 9 (2019) 3005-3012.
[78] M. Zhu, C. Zhai, S. Kim, M. Fujitsuka, T. Majima, Monitoring Transport Behavior of Charge Carriers in a Single CdS@CuS Nanowire via In Situ Single-Particle Photoluminescence Spectroscopy, The journal of physical chemistry letters, (2019) 4017-4024.
[79] Q. Sun, Y. Zhao, F. Qin, J. Zhang, B. Wang, H. Ye, J. Sheng, Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution, Nanotechnology, 32 (2020).
[80] E. Gomes, L. Gracia, A. Santiago, R. Tranquilin, F. Motta, R. Amoresi, E. Longo, M. Bomio, J. Andrés, Structure, electronic properties, morphology evolution, and photocatalytic activity in PbMoO4 and Pb1-2xCaxSrxMoO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions, Physical chemistry chemical physics : PCCP, (2020).
[81] E. Karacaoglu, O. Yildirim, T. Ozturk, M. Gul, Effect of lanthanum doping on structural, optical, and photocatalytic properties of YVO4, Journal of Materials Research, 38 (2023) 3536-3547.
[82] V.-A. Surdu, R. Győrgy, X-ray Diffraction Data Analysis by Machine Learning Methods—A Review, Applied Sciences, (2023).
[83] A. Tiwari, Advancement of Materials to Sustainable & Green World, Advanced Materials Letters, (2023).
[84] D. Vadivel, S. Suryakumar, C. Casella, A. Speltini, D. Dondi, Advancements in Materials Science and Photocatalysts for Sustainable Development, Catalysts, (2024).
[85] D.G. Rivas, K.-H. Kim, O.-K. Im, C. Wu, A Photocatalytic Building Façade for Improving Urban Air Quality, Empower, (2022).
[86] Q. Geng, H. Wang, R. Chen, L. Chen, K. Li, F. Dong, Advances and challenges of photocatalytic technology for air purification, National Science Open, (2022).
[87] C. Pei, J.-H. Zhu, F. Xing, Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method, Journal of Cleaner Production, (2021).
[88] M. Pivert, O. Kerivel, B. Zerelli, Y. Leprince-Wang, ZnO nanostructures based innovative photocatalytic road for air purification, Journal of Cleaner Production, 318 (2021) 128447.
[89] F. He, W. Jeon, W. Choi, Photocatalytic air purification mimicking the self-cleaning process of the atmosphere, Nature Communications, 12(1) (2021) 2528.
[90] C. Ayappan, S.K. Kannan, T. Ochiai, X. Zhang, R. Xing, S. Liu, A. Fujishima, Commercialization aspects for TiO<sub>2</sub>-based indoor air purification, Trends in Chemistry, 7(3) (2025) 134-148.
[91] S. Mansouri, A. Rahai, S.H. Rashedi, F. Moghadas Nejad, Predicting Concrete Carbonation Depth and Investigating the Influencing Factors through Machine Learning Approaches and Optimization, Amirkabir Journal of Civil Engineering, 56(12) (2025) 1583-1604.
[92] F. Salvadores, M. Reli, O.M. Alfano, K. Kočí, M.d.l.M. Ballari, Efficiencies Evaluation of Photocatalytic Paints Under Indoor and Outdoor Air Conditions, Frontiers in Chemistry, 8 (2020).
[93] Y. Wu, P. Krishnan, M.-H. Zhang, L. Yu, Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings, Energy and Buildings, 164 (2018) 176-186.
[94] J. Yang, D.L.M. Kumar, A. Pyrgou, A. Chong, M. Santamouris, D. Kolokotsa, S. Lee, Green and cool roofs’ urban heat island mitigation potential in tropical climate, Solar Energy, (2018).
[95] A.M.M. Irfeey, H. Chau, M. Sumaiya, C.Y. Wai, N. Muttil, E. Jamei, Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas, Sustainability, (2023).
[96] D. Kotzias, Photo-Induced Degradation of Priority Air Pollutants on TiO2-Based Coatings in Indoor and Outdoor Environments—A Mechanistic View of the Processes at the Air/Catalyst Interface, Crystals, (2024).
[97] D.M. Degefu, Z. Liao, Photocatalytic degradation of volatile organic compounds using nanocomposite of P-type and N-type transition metal semiconductors, Journal of Sol-Gel Science and Technology, 98 (2021) 605-614.
[98] Y. Yang, T. Ji, Y. Lin, W. Su, Effect of adhesive on photocatalytic NOx removal and stability over polymeric carbon nitride coated cement mortars, Journal of Cleaner Production, 295 (2021) 126458.
[99] Y. Ji, A. Mattsson, G. Niklasson, C. Granqvist, L. Österlund, Synergistic TiO2/VO2 Window Coating with Thermochromism, Enhanced Luminous Transmittance, and Photocatalytic Activity, Joule, (2019).
[100] I. Hernández-Pérez, Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in Mexico, Applied Sciences, 11 (2021) 3263.
[101] Q. Maqbool, O. Favoni, T. Wicht, N. Lasemi, S. Sabbatini, M. Stöger-Pollach, M. Ruello, F. Tittarelli, G. Rupprechter, Highly Stable Self-Cleaning Paints Based on Waste-Valorized PNC-Doped TiO2 Nanoparticles, ACS Catalysis, 14 (2024) 4820-4834.
[102] M. Hassnain, A. Ali, M.R. Azhar, A. Abutaleb, M. Mubashir, Challenges and Perspectives on Photocatalytic Membrane Reactors for Volatile Organic Compounds Degradation and Nitrogen Oxides Treatment, Global Challenges, 9(5) (2025) 2500035.
[103] J. Yu, Y. Xuan, SiO2–TiO2 Nanoparticle Aqueous Foam for Volatile Organic Compounds’ Suppression, Toxics, 12 (2024).
[104] A. Ghaffar, I.A. Channa, A. Chandio, Mitigating UV-Induced Degradation in Solar Panels through ZnO Nanocomposite Coatings, Sustainability, (2024).
[105] M. Li, C. Qiu, S. Dogel, P. Chen, D. Perovic, J. Howe, Microstructure-Dependent Thermal Stability of Super-Tetragonal Nanocomposite Films through In Situ TEM/EELS Study, ACS applied materials & interfaces, (2022).
[106] A. Fadl, M. Abdou, M. Hamza, S. Sadeek, Corrosion-inhibiting, self-healing, mechanical-resistant, chemically and UV stable PDMAS/TiO2 epoxy hybrid nanocomposite coating for steel petroleum tanker trucks, Progress in Organic Coatings, 146 (2020) 105715.
[107] C. Liu, W. Wang, Analysis of degradation effect of carbon nitride nanomaterials in pollutant treatment, Applied Mathematics and Nonlinear Sciences, (2024).
[108] M. Ghanbari, M. Salavati‐Niasari, Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities, Ecotoxicology and environmental safety, 208 (2021) 111712.
[109] M. Ghodrati, M. Mousavi-Kamazani, Z. Bahrami, Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces, Scientific Reports, 13(1) (2023) 548.
[110] C. Chang, S. Rad, L. Gan, Z. Li, J. Dai, A. Shahab, Review of the sol–gel method in preparing nano TiO2 for advanced oxidation process, Nanotechnology Reviews, 12(1) (2023).