ارزیابی ضرایب کاهش مقاومت خمشی اعضا در قاب خمشی بتن آرمه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه کارلتون، اوتاوا، کانادا

چکیده

در این مقاله، به برآورد دقیق ضرایب کاهش مقاومت خمشی در تیرها و ستون‌های بتن آرمه با در نظرگیری اثر اندرکنش نیروی محوری برای ستون‌ها پرداخته‌شده است. برای تعیین ضرایب کاهش مقاومت، 6750 تیر و 3000 ستون با اشکال مقطع متنوع شامل تیرهای مستطیلی، T-شکل و L-شکل و ستون‌های مستطیلی و دایره‌ای مورد بررسی قرار گرفتند. متغیرهای طراحی مختلف شامل مقاومت فشاری بتن، مقاومت تسلیم آرماتورها، درصد آرماتور، نسبت بار محوری و ابعاد هندسی برای این مقاطع در نظر گرفته شدند. تحلیل‌های تصادفی با استفاده از روش نمونه‌گیری ابرمعکب لاتین و به تعداد 1000 نمونه برای هر مقطع انجام شد تا تأثیر عدم قطعیت‌های مربوط به مصالح، هندسه و مدل‌سازی در نظر گرفته شود. به علاوه آن‌که مدل‌های آماری عدم قطعیت مدل‌سازی نیز با استفاده از داده‌های آزمایشگاهی و تحلیل به‌روزرسانی شدند و از این مدل‌های به‌روز شده استفاده گردید. ضرایب پیشنهادی برای شرایط مختلف، از طریق تحلیل قابلیت اطمینان و کالیبراسیون بر اساس شاخص‌های قابلیت اطمینان آیین‌نامه ASCE 7-22 تنظیم شدند. نتایج نشان می‌دهد که در بسیاری از موارد، به خصوص ستون‌های ناحیه انتقال و فشار-کنترل، ضرایب پیشنهادی بیشتر از مقادیر تجویزی آیین‌نامه ACI 318-19 هستند. این افزایش، به‌ویژه در طراحی ستون‌های ثقلی، می‌تواند وزن آرماتورها و حجم بتن را به صورت چشم‌گیری کاهش (به ترتیب حدود 40 درصد و 15 درصد در یک ساختمان 8 طبقه) داده و در عین حفظ سطح ایمنی، هزینه‌های ساخت را به میزان قابل‌توجهی کاهش دهد. این یافته‌ها نشان می‌دهد که به‌روزرسانی ضرایب کاهش مقاومت و استفاده از مقادیر متغیر بر اساس ویژگی‌های طراحی، می‌تواند به طراحی اقتصادی‌تر و بهینه‌تر سازه‌ها کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Flexural Strength Reduction Factors of Members in Reinforced Concrete Moment Frames

نویسندگان [English]

  • Naghmeh Haji Mohammad Yazdi 1
  • Siamak Epackachi 1
  • Vahid Sadeghian 2
  • Ardeshir Deylami 1
1 Department of Civil and Environmental Engineering
2 Department of Civil and Environmental Engineering
چکیده [English]

In this paper, the precise estimation of flexural resistance reduction factors in reinforced concrete beams and columns is investigated, considering the interaction effect of axial force for columns. To determine the reduction factors, 6,750 beams and 3,000 columns with various cross-sectional shapes, including rectangular, T-shaped, and L-shaped beams, as well as rectangular and circular columns, were examined. Different design variables, such as concrete compressive strength, reinforcement yield strength, reinforcement ratio, axial load ratio, and geometric dimensions, were considered for these sections. Random analyses were performed using the Latin hypercube sampling method with 1,000 samples for each section to account for uncertainties related to materials, geometry, and modeling. Additionally, statistical models of modeling uncertainty were updated using experimental data and analysis, and these updated models were employed. The proposed reduction factors for various conditions were calibrated based on reliability indices from the ASCE 7-22 code. The results indicate that, in many cases, particularly for transition and compression-controlled columns, the proposed factors are higher than the prescribed values in the ACI 318-19 code. This increase, especially in the design of gravity columns, can significantly reduce the weight of reinforcement and the volume of concrete (by approximately 40% and 15%, respectively, in an 8-story building), thereby considerably lowering construction costs while maintaining the required safety level. These findings highlight that updating the resistance reduction factors and utilizing variable values based on design characteristics can contribute to more economical and optimized structural designs.

کلیدواژه‌ها [English]

  • Strength Reduction Factors
  • Flexural Strength
  • Flexural Strength Under Axial Force Interaction
  • Reliability Analysis
  • Modeling Uncertainty
[1] J.G. MacGregor, Safety and limit states design for reinforced concrete, Canadian Journal of Civil Engineering, 3(4) (1976) 484-513.
[2] B. Ellingwood, T.V. Galambos, J.G. MacGregor, C.A. Cornell, Development of a probability based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures, Department of Commerce, National Bureau of Standards, 1980.
[3] A. Mohamed, R. Soares, W.S. Venturini, Partial safety factors for homogeneous reliability of nonlinear reinforced concrete columns, Structural Safety, 23(2) (2001) 137-156.
[4] A.S. Nowak, M.M. Szerszen, Calibration of design code for buildings (ACI 318): Part 1—Statistical models for resistance, Structural Journal, 100(3) (2003) 377-382.
[5] M.M. Szerszen, A.S. Nowak, Calibration of design code for buildings (ACI 318): Part 2—Reliability analysis and resistance factors, Structural journal, 100(3) (2003) 383-391.
[6] ACI, Building code requirements for structural concrete:(ACI 318-19) and commentary (ACI 318R-19), American Concrete Institute, 2019.
[7] F. Bartlett, Canadian Standards Association standard A23. 3-04 resistance factor for concrete in compression, Canadian Journal of Civil Engineering, 34(9) (2007) 1029-1037.
[8] S. Alacali, G. Arslan, Assessment of the strength reduction factor in predicting the flexural strength, Journal of Theoretical and Applied Mechanics, 56(4) (2018) 1043-1053.
[9] T. Zhang, F.M. Bartlett, Partial Material Strength Reduction Factors: for ACI 318?, Aci Structural Journal, 116(3) (2019) 159–169.
[10] W. Sutrisno, M. Irmawan, D. Prasetya, Strength reduction factor evaluation of the circular reinforced concrete column with varying eccentricity ratio (e/h), Journal of Civil Engineering, 35(1) (2020) 19-23.
[11] W. Sutrisno, B. Piscesa, M. Irmawan, Strength Reduction Factor of Square Reinforced Concrete Column Using Monte Carlo Simulation, Journal of Civil Engineering, 35(2) (2020) 50-56.
[12] O. Ali, A.-M. Mariet, H. Madkour, Y. Hassanean, Strength reduction factor based on probabilistic analysis for hybrid reinforced concrete beams, Engineering Structures, 308 (2024) 117992.
[13] A. Nahid, A. Reza, N. Kourosh, Reliability-Based Calibration of Strength-Reduction Factors for Flexural Design of FRP-RC Beams Under Various Load Combinations, Journal of Composites Science, 9(4) (2025) 154.
[14] M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42(1) (2000) 55-61.
[15] R. Rackwitz, B. Flessler, Structural reliability under combined random load sequences, Computers & structures, 9(5) (1978) 489-494.
[16] A.S. Nowak, A.M. Rakoczy, E.K. Szeliga, Revised statistical resistance models for R/C structural components, Special Publication, 284 (2012) 1-16.
[17] F.M. Bartlett, J.G. MacGregor, Statistical analysis of the compressive strength of concrete in structures, Materials Journal, 93(2) (1996) 158-168.
[18] M. Bournonville, J. Dahnke, D. Darwin, Statistical analysis of the mechanical properties and weight of reinforcing bars, University of Kansas Center for Research, Inc., 2004.
[19] C. Chadwell, R. Imbsen, XTRACT-cross section analysis software for structural and earthquake engineering, TRC, Rancho Cordova, CA,⟨ http://www.imbsen. com/xtract. htm⟩(Aug. 30, 2011),  (2002).
[20] F.J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, Journal of the American statistical Association, 46(253) (1951) 68-78.
[21] C.J. Turkstra, Theory of Structural Design Decisions, Solid Mechanics Division, University of Waterloo, 1970.
[22] A.S. Nowak, K.R. Collins, Reliability of structures, CRC press, 2012.
[23] ASCE, Minimum design loads and associated criteria for buildings and other structures, ASCE/SEI 7-22, American Society of Civil Engineers, 2022.
[24] T.V. Galambos, B. Ellingwood, J.G. MacGregor, C.A. Cornell, Probability based load criteria: Assessment of current design practice, Journal of the Structural Division, 108(5) (1982) 959-977.
[25] V. Aguilar, R.W. Barnes, A. Nowak, Strength Reduction Factors for ACI 318 Strut-and-Tie Method for Deep Beams, ACI Structural Journal, 119(2) (2022) 103-112.
[26] N. Hajimohammadyazdi, S. Epackachi, V. Sadeghian, A. Deylami, Investigation of overstrength and strength reduction factors for seismic design of RC beams, in:  Proceedings of the World Conference on Earthquake Engineering, 18WCEE, Milan, Italy, 2024.