بررسی همبستگی بین عدد اس پی تی، سرعت موج برشی و مدول برشی کرنش کوچک برای شمال ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران

چکیده

سرعت موج برشی Vs و مدول برشی کرنش کوچک Gmax، از مهم ترین پارامترها برای تعیین خصوصیات لرزه ای یک ساختگاه هستند. اگرچه چندین آزمایش میدانی برای اندازه گیری این دو پارامتر وجود دارند، اما انجام آن‌ها به علت پیچیدگی و هزینه بالا، همیشه بسادگی امکان پذیر نیست. از این رو، اندازه گیری Vs و Gmax به طور غیرمستقیم و از طریق معادلات تجربی مرتبط با عدد SPT حاِئز اهمیت است. با توجه به قرار گیری مناطق شمالی ایران در منطقه لرزه‌خیز و توسعه سریع ساخت و ساز در آن، در این پژوهش برای اولین بار با انجام آزمایش‌های صحرایی (نفوذ استاندارد و درون چاهی) و با حفر 11گمانه، روابط همبستگی بین عدد SPT با سرعت موج برشی و با مدول برشی کرنش کوچک برای سه نوع خاک رسی، ماسه‌ای و سیلتی برای این منطقه ارائه گردیدند. نتایج با استفاده از داده‌های 3 گمانه در بخش دیگری از ناحیه شمالی ایران صحت ‌سنجی شدند. براساس روابط همبستگی بین عدد SPT و مدول برشی کرنش کوچک، میزان تاثیرپذیری مدول برشی کرنش کوچک، با تغییر وزن مخصوص لایه‌های خاک مورد بررسی قرار گرفت. نتایج این پژوهش نشان دادند که همبستگی خوبی بین عدد SPTبا سرعت موج برشی و مدول برشی کرنش کوچک وجود دارد. همچنین مشاهده شد حساسیت خاک‌های رسی نسبت به تغییرات وزن مخصوص هر لایه بیش از دو نوع خاک ماسه ای و سیلتی بوده و در تعیین روابط همبستگی برای خاک‌های رسی باید به وزن مخصوص خاک هر لایه توجه ویژه شود.

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Correlation between SPT Number, Shear Wave Velocity, and Small-Strain Shear Modulus in Northern Iran

نویسندگان [English]

  • Mohammad Hadi Hatefi
  • Mahyar Arabani
  • Meghdad Payan
  • Payam Zanganeh Ranjbar
  • Hassan Ahmadi
Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

 The shear wave velocity (Vs) and the small-strain shear modulus (Gmax) are crucial parameters to assess the dynamic properties of soil and the seismic characteristics of a site. In field trials, it may be challenging and costly to quantify these factors, limiting their feasibility. Thus, it is essential to determine indirectly Vs and Gmax using empirical equations linked to the SPT number. The present research focused on the seismic zone in the northern regions of Iran, where construction is rapidly increasing. The field tests were conducted by drilling eleven boreholes and analysing the correlation between SPT number, shear wave velocity, and small-strain shear modulus in clayey, sandy, and silty soil. The results were validated using data from three boreholes in a different area of northern Iran. Gmax is a parameter that reflects the dynamic characteristic of soils, specifically the hardness of geomaterials under shear deformation. Variations in the specific weight of soil layers affecting the small-strain shear modulus were analysed by correlating the SPT number to the small-strain shear modulus. The research findings demonstrated a strong correlation between the SPT number, shear wave velocity, and smallstrain shear modulus. Previous studies and data validation verified the models proposed in this research. Clayey soils are more sensitive to changes in the specific weight of each layer than sandy and silty soils. Since this sensitivity exhibits a non-linear relationship, it is crucial to consider the specific weight of each layer of soil when determining correlations for clayey soils.

کلیدواژه‌ها [English]

  • Seismic Waves
  • Standard Penetration Test
  • Downhole Test
  • Small-Strain Shear Modulus
  • North of Iran
[1]       M.K. Akin, S.L. Kramer, T. Topal, Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey), Eng Geol 119 (2011) 1–17. https://doi.org/10.1016/j.enggeo.2011.01.007.
[2]       H. Haghsheno, M. Arabani, Seismic Bearing Capacity of Shallow Foundations Placed on an Anisotropic and Nonhomogeneous Inclined Ground, Indian Geotechnical Journal 51 (2021) 1319–1337. https://doi.org/10.1007/s40098-021-00534-7.
[3]       M. Veiskarami, R. Jamshidi Chenari, M.A. Ahmadi, M.H. Hatefi, A Study on the Seismic Passive Earth Pressure on Rigid Retaining Walls Considering Seismic Acceleration Field, Journal of Earthquake Engineering 27 (2023) 2013–2033. https://doi.org/10.1080/13632469.2022.2091686.
[4]       B. Kirar, B.K. Maheshwari, P. Muley, Correlation Between Shear Wave Velocity (Vs) and SPT Resistance (N) for Roorkee Region, International Journal of Geosynthetics and Ground Engineering 2 (2016) 9. https://doi.org/10.1007/s40891-016-0047-5.
[5]       A. Sil, J. Haloi, Empirical Correlations with Standard Penetration Test (SPT)-N for Estimating Shear Wave Velocity Applicable to Any Region, International Journal of Geosynthetics and Ground Engineering 3 (2017) 22. https://doi.org/10.1007/s40891-017-0099-1.
[6]       D.K. Lee, J. In, S. Lee, Standard deviation and standard error of the mean, Korean J Anesthesiol 68 (2015) 220. https://doi.org/10.4097/kjae.2015.68.3.220.
[7]       J.I. Joyner, W. B., Fumal, T. E., & Ziony, Predictive mapping of earthquake ground motion., FUTURE DIRECTIONS IN EVALUATING EARTHQUAKE HAZARDS OF SOUTHERN CALIFORNIA, 202 (1985).
[8]       K. Kayabali, Soil liquefaction evaluation using shear wave velocity, Eng Geol 44 (1996) 121–127. https://doi.org/10.1016/S0013-7952(96)00063-4.
[9]       H. Chatrayi, F. Hajizadeh, B. Taghavi, Shear wave velocity (Vs) and SPT resistance (N) correlation for the Isfahan Metro, Iran, Acta Geophysica 72 (2023) 1749–1764. https://doi.org/10.1007/s11600-023-01180-8.
[10]     H.A. Abbas, D. Al-Jeznawi, M.A.Q. Al-Janabi, L.F.A. Bernardo, M.A.S.C. Jacinto, Exploring Shear Wave Velocity—NSPT Correlations for Geotechnical Site Characterization: A Review, CivilEng 5 (2024) 119–135. https://doi.org/10.3390/civileng5010006.
[11]     A. Leisi;, S. Manaman, Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran, Journal of the Earth and Space Physics 49 (2023) 389–405. https://doi.org/10.22059/jesphys.2023.348494.1007456.
[12]     M. Payan, A. Khoshghalb, K. Senetakis, N. Khalili, Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression, Comput Geotech 72 (2016) 28–41. https://doi.org/10.1016/j.compgeo.2015.11.003.
[13]     S.-H.H. He, M. Goudarzy, Z. Ding, Y. Sun, T. Xu, Q.-F.F. Zhang, Small-strain shear modulus (Gmax) and microscopic pore structure of calcareous sand with different grain size distributions, Granul Matter 24 (2022) 112. https://doi.org/10.1007/s10035-022-01270-2.
[14]     P. Anbazhagan, K. Ayush, M.E. Yadhunandan, K. Siriwanth, K. Suryanarayana, G. Sahodar, Effective Use of SPT: Hammer Energy Measurement and Integrated Subsurface Investigation, Indian Geotechnical Journal 52 (2022) 1079–1096. https://doi.org/10.1007/s40098-022-00609-z.
[15]     P. Anbazhagan, A. Kumar, S.G. Ingale, S.K. Jha, K.R. Lenin, Shear modulus from SPT N-values with different energy values, Soil Dynamics and Earthquake Engineering 150 (2021) 106925. https://doi.org/10.1016/j.soildyn.2021.106925.
[16]     P. Anbazhagan, T.G. Sitharam, Relationship between Low Strain Shear Modulus and Standard Penetration Test N Values, Geotechnical Testing Journal 33 (2010) 150–164. https://doi.org/10.1520/GTJ102278.
[17]     C.D.S. BARROS, J. C., & Pinto, Estimation of maximum shear modulus of Brazilian tropical soils from standard penetration test, N International Conference on Soil Mechanics and Foundation Engineering (1999) (pp. 29-30).
[18]     H.B. Seed, I.M. Idriss, I. Arango, Evaluation of Liquefaction Potential Using Field Performance Data, Journal of Geotechnical Engineering 109 (1983) 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
[19]     Y. Ohta, N. Goto, H. Kagami, K. Shiono, Shear wave velocity measurement during a standard penetration test, Earthq Eng Struct Dyn 6 (1978) 43–50. https://doi.org/10.1002/eqe.4290060106.
[20]     C. Ya, C., Songyu, L., & Guojun, Characterization on the correlation between SPT-N and small strain shear modulus G max of Jiangsu silts of China., Earth Sciences Research Journal (2021) 25(2), 225–235.
[21]     H.L. Rocha, B. P., Silva, B. C. D., & Giacheti, Maximum shear modulus estimative from SPT for some Brazilian tropical soils, Soils and Rocks (2023) 46, e2023005222.
[22]     W. Hassan, M. Qasim, B. Alshameri, A. Shahzad, M.H. Khalid, S.U. Qamar, Geospatial intelligence in geotechnical engineering: a comprehensive investigation into SPT-N, soil types, and undrained shear strength for enhanced site characterization, Bulletin of Engineering Geology and the Environment 83 (2024) 380. https://doi.org/10.1007/s10064-024-03884-7.
[23]     M. Letif, R. Bahar, N. Mezouar, Correlations Among CPT, MPT, and SPT in Clayey Soils: A Case Study from Central Northern Algeria, Geotechnical and Geological Engineering 43 (2025) 138. https://doi.org/10.1007/s10706-025-03099-x.
[24]     M.R. Asef, A. Misaghi, M. Sarmadivaleh, The simultaneous effect of porosity and clay on shear wave velocity in shale rocks, Journal of Petroleum Geomechanics 6 (2023) 40–47. https://doi.org/10.22107/jpg.2023.402053.1198.
[25]     S.-W.W. Moon, Y.C.H. Ng, T. Ku, Global semi-empirical relationships for correlating soil unit weight with shear wave velocity by void-ratio function, Canadian Geotechnical Journal 55 (2018) 1193–1199. https://doi.org/10.1139/cgj-2017-0226.
[26]     T.O. Hodson, Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geosci Model Dev 15 (2022) 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022.
[27]     D. ASTM, Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. ASTM D1586, ASTM Standard Test Method (n.d.) 1586, 1–9.
[28]     Test Methods for Downhole Seismic Testing, ASTM D7400, (2019). https://doi.org/10.1520/D7400_D7400M-19.
[29]     A. Jafari, M. K., Shafiei, A., & Razmkhah, Dynamic properties of fine grained soils in south of Tehran, (2002).
[30]     Ü. Dikmen, Statistical correlations of shear wave velocity and penetration resistance for soils, Journal of Geophysics and Engineering 6 (2009) 61–72. https://doi.org/10.1088/1742-2132/6/1/007.
[31]     A.S. Daag, O.P.C. Halasan, A.A.T. Magnaye, R.N. Grutas, R.U. Solidum, Empirical Correlation between Standard Penetration Resistance (SPT-N) and Shear Wave Velocity (Vs) for Soils in Metro Manila, Philippines, Applied Sciences 12 (2022) 8067. https://doi.org/10.3390/app12168067.
[32]     C.R. Escudero, A. Ramirez Gaytan, A. Zamora Camacho, A. Preciado, K.L. Flores, A. Gomez Hernandez, Geotechnical zonation and soil–structure interaction at Puerto Vallarta, México, Natural Hazards 110 (2022) 247–267. https://doi.org/10.1007/s11069-021-04945-w.
[33]     J.J. Crispin, C.E.L. Gilder, P.J. Vardanega, Review of SPT-undrained shear strength correlation for UK soil deposits, in: Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, CRC Press, London, 2024: pp. 1535–1538. https://doi.org/10.1201/9781003431749-283.