[1] M.K. Akin, S.L. Kramer, T. Topal, Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey), Eng Geol 119 (2011) 1–17. https://doi.org/10.1016/j.enggeo.2011.01.007.
[2] H. Haghsheno, M. Arabani, Seismic Bearing Capacity of Shallow Foundations Placed on an Anisotropic and Nonhomogeneous Inclined Ground, Indian Geotechnical Journal 51 (2021) 1319–1337. https://doi.org/10.1007/s40098-021-00534-7.
[3] M. Veiskarami, R. Jamshidi Chenari, M.A. Ahmadi, M.H. Hatefi, A Study on the Seismic Passive Earth Pressure on Rigid Retaining Walls Considering Seismic Acceleration Field, Journal of Earthquake Engineering 27 (2023) 2013–2033. https://doi.org/10.1080/13632469.2022.2091686.
[4] B. Kirar, B.K. Maheshwari, P. Muley, Correlation Between Shear Wave Velocity (Vs) and SPT Resistance (N) for Roorkee Region, International Journal of Geosynthetics and Ground Engineering 2 (2016) 9. https://doi.org/10.1007/s40891-016-0047-5.
[5] A. Sil, J. Haloi, Empirical Correlations with Standard Penetration Test (SPT)-N for Estimating Shear Wave Velocity Applicable to Any Region, International Journal of Geosynthetics and Ground Engineering 3 (2017) 22. https://doi.org/10.1007/s40891-017-0099-1.
[6] D.K. Lee, J. In, S. Lee, Standard deviation and standard error of the mean, Korean J Anesthesiol 68 (2015) 220. https://doi.org/10.4097/kjae.2015.68.3.220.
[7] J.I. Joyner, W. B., Fumal, T. E., & Ziony, Predictive mapping of earthquake ground motion., FUTURE DIRECTIONS IN EVALUATING EARTHQUAKE HAZARDS OF SOUTHERN CALIFORNIA, 202 (1985).
[8] K. Kayabali, Soil liquefaction evaluation using shear wave velocity, Eng Geol 44 (1996) 121–127. https://doi.org/10.1016/S0013-7952(96)00063-4.
[9] H. Chatrayi, F. Hajizadeh, B. Taghavi, Shear wave velocity (Vs) and SPT resistance (N) correlation for the Isfahan Metro, Iran, Acta Geophysica 72 (2023) 1749–1764. https://doi.org/10.1007/s11600-023-01180-8.
[10] H.A. Abbas, D. Al-Jeznawi, M.A.Q. Al-Janabi, L.F.A. Bernardo, M.A.S.C. Jacinto, Exploring Shear Wave Velocity—NSPT Correlations for Geotechnical Site Characterization: A Review, CivilEng 5 (2024) 119–135. https://doi.org/10.3390/civileng5010006.
[11] A. Leisi;, S. Manaman, Shear wave velocity estimation using seismic attributes in one of the sandstone reservoirs of southern Iran, Journal of the Earth and Space Physics 49 (2023) 389–405. https://doi.org/10.22059/jesphys.2023.348494.1007456.
[12] M. Payan, A. Khoshghalb, K. Senetakis, N. Khalili, Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression, Comput Geotech 72 (2016) 28–41. https://doi.org/10.1016/j.compgeo.2015.11.003.
[13] S.-H.H. He, M. Goudarzy, Z. Ding, Y. Sun, T. Xu, Q.-F.F. Zhang, Small-strain shear modulus (Gmax) and microscopic pore structure of calcareous sand with different grain size distributions, Granul Matter 24 (2022) 112. https://doi.org/10.1007/s10035-022-01270-2.
[14] P. Anbazhagan, K. Ayush, M.E. Yadhunandan, K. Siriwanth, K. Suryanarayana, G. Sahodar, Effective Use of SPT: Hammer Energy Measurement and Integrated Subsurface Investigation, Indian Geotechnical Journal 52 (2022) 1079–1096. https://doi.org/10.1007/s40098-022-00609-z.
[15] P. Anbazhagan, A. Kumar, S.G. Ingale, S.K. Jha, K.R. Lenin, Shear modulus from SPT N-values with different energy values, Soil Dynamics and Earthquake Engineering 150 (2021) 106925. https://doi.org/10.1016/j.soildyn.2021.106925.
[16] P. Anbazhagan, T.G. Sitharam, Relationship between Low Strain Shear Modulus and Standard Penetration Test N Values, Geotechnical Testing Journal 33 (2010) 150–164. https://doi.org/10.1520/GTJ102278.
[17] C.D.S. BARROS, J. C., & Pinto, Estimation of maximum shear modulus of Brazilian tropical soils from standard penetration test, N International Conference on Soil Mechanics and Foundation Engineering (1999) (pp. 29-30).
[18] H.B. Seed, I.M. Idriss, I. Arango, Evaluation of Liquefaction Potential Using Field Performance Data, Journal of Geotechnical Engineering 109 (1983) 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
[19] Y. Ohta, N. Goto, H. Kagami, K. Shiono, Shear wave velocity measurement during a standard penetration test, Earthq Eng Struct Dyn 6 (1978) 43–50. https://doi.org/10.1002/eqe.4290060106.
[20] C. Ya, C., Songyu, L., & Guojun, Characterization on the correlation between SPT-N and small strain shear modulus G max of Jiangsu silts of China., Earth Sciences Research Journal (2021) 25(2), 225–235.
[21] H.L. Rocha, B. P., Silva, B. C. D., & Giacheti, Maximum shear modulus estimative from SPT for some Brazilian tropical soils, Soils and Rocks (2023) 46, e2023005222.
[22] W. Hassan, M. Qasim, B. Alshameri, A. Shahzad, M.H. Khalid, S.U. Qamar, Geospatial intelligence in geotechnical engineering: a comprehensive investigation into SPT-N, soil types, and undrained shear strength for enhanced site characterization, Bulletin of Engineering Geology and the Environment 83 (2024) 380. https://doi.org/10.1007/s10064-024-03884-7.
[23] M. Letif, R. Bahar, N. Mezouar, Correlations Among CPT, MPT, and SPT in Clayey Soils: A Case Study from Central Northern Algeria, Geotechnical and Geological Engineering 43 (2025) 138. https://doi.org/10.1007/s10706-025-03099-x.
[24] M.R. Asef, A. Misaghi, M. Sarmadivaleh, The simultaneous effect of porosity and clay on shear wave velocity in shale rocks, Journal of Petroleum Geomechanics 6 (2023) 40–47. https://doi.org/10.22107/jpg.2023.402053.1198.
[25] S.-W.W. Moon, Y.C.H. Ng, T. Ku, Global semi-empirical relationships for correlating soil unit weight with shear wave velocity by void-ratio function, Canadian Geotechnical Journal 55 (2018) 1193–1199. https://doi.org/10.1139/cgj-2017-0226.
[26] T.O. Hodson, Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geosci Model Dev 15 (2022) 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022.
[27] D. ASTM, Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. ASTM D1586, ASTM Standard Test Method (n.d.) 1586, 1–9.
[28] Test Methods for Downhole Seismic Testing, ASTM D7400, (2019). https://doi.org/10.1520/D7400_D7400M-19.
[29] A. Jafari, M. K., Shafiei, A., & Razmkhah, Dynamic properties of fine grained soils in south of Tehran, (2002).
[30] Ü. Dikmen, Statistical correlations of shear wave velocity and penetration resistance for soils, Journal of Geophysics and Engineering 6 (2009) 61–72. https://doi.org/10.1088/1742-2132/6/1/007.
[31] A.S. Daag, O.P.C. Halasan, A.A.T. Magnaye, R.N. Grutas, R.U. Solidum, Empirical Correlation between Standard Penetration Resistance (SPT-N) and Shear Wave Velocity (Vs) for Soils in Metro Manila, Philippines, Applied Sciences 12 (2022) 8067. https://doi.org/10.3390/app12168067.
[32] C.R. Escudero, A. Ramirez Gaytan, A. Zamora Camacho, A. Preciado, K.L. Flores, A. Gomez Hernandez, Geotechnical zonation and soil–structure interaction at Puerto Vallarta, México, Natural Hazards 110 (2022) 247–267. https://doi.org/10.1007/s11069-021-04945-w.
[33] J.J. Crispin, C.E.L. Gilder, P.J. Vardanega, Review of SPT-undrained shear strength correlation for UK soil deposits, in: Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, CRC Press, London, 2024: pp. 1535–1538. https://doi.org/10.1201/9781003431749-283.