رفتار چرخهای اتصالات تیر به ستون مجهز به میراگرهای کمانش تاب

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشگاه صنعتی ارومیه، ارومیه، ایران.

چکیده

ترکیب سیستمهای کنترل خرابی متشکل از میراگرهای فولادی با اتصالات در قابهای فولادی باعث کاهش خرابی وارده به عناصر اصلی سازه در طی زمینلرزه میشوند. در این مطالعه، دو نوع میراگر کمانشتاب در اتصالات مقاوم خمشی تیر به ستون تحت اثر بارگذاری چرخهای به صورت عددی مورد بررسی قرار گرفتهاند. این میراگرها به صورت میراگر ورق قوسی مهار شده در زیر ورق (JAPD) و میراگر لوله در لوله (JTTD) میباشند. برای صحت-سنجی مدلسازی عناصر محدود، نتایج تحلیلهای عددی میراگرهای شکافدار T-stub با نتایج آزمایشگاهی مقایسه شدهاند که انطباق بسیار خوبی بین نتایج عددی و آزمایشگاهی وجود دارد. با انجام تحلیل چرخهای تا دریفت 4% بر روی دوازده مدل میراگر به ازای پارامترهای مختلف نظیر ضرایب مختلف مقاومت مصالح میراگر به تیر و مساحت سطح مقطع میراگر، مشخصههای عملکرد لرزهای شامل سختی اولیه، مقاومت خمشی، شکلپذیری و اتلاف انرژی مقایسه شده است. بر اساس نتایج حاصل از تحلیل، میراگر JTTD نسبت به میراگر JAPD دارای عملکرد بهتری میباشد، به گونهای که مقاومت خمشی و اتلاف انرژی مدل JTTD به ترتیب در حدود 10% و 5% بیش از مقادیر متناظر مدل JAPD است. با افزایش ضریب مقاومت مصالح از 0.6 به 1.00، مقاومت خمشی مدلها در حدود 35% افزایش مییابد. در این مدلها با افزایش سطح مقطع میراگر به میزان 40%، مقاومت خمشی اتصال در حدود 50% افزایش پیدا میکند. روابط تئوری ارائه شده بیش از 85% مقدار متناظر تحلیل عناصر محدود را تخمین میزنند، اما برای تخمین سختی الاستیک مدلها، باید مقدار مبتنی بر روابط تئوری را بر 3/50 تقسیم نمود. افزایش ضریب مقاومت مصالح از 0/6 به 1/0، تأثیر محسوسی بر اتلاف انرژی نداشته، در حالی که افزایش شکلپذیری در حدود 25% میباشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hysteretic Behavior of Beam-to-Column Connections Equipped with Buckling-Restrained Steel Dampers

نویسندگان [English]

  • Behzad Shekastehband
  • Behzad Shekastehband
Graduate MSc Student
چکیده [English]

The combination of damage-controlled systems consisting of steel dampers with connections in steel frames reduces the damage to the main structural elements during earthquakes. In this study, two types of buckling-restrained dampers in moment-resisting connections between beams and columns under cyclic loading are numerically investigated. These dampers are the Jointed Arc Plate Damper (JAPD) and the Tube-in-Tube Damper (JTTD). To validate the finite element modeling, the results of numerical analyses of T-stub dampers were compared with experimental results, showing very good agreement between numerical and experimental results. By conducting cyclic analyses up to 4% drift on twelve damper models for various parameters such as different damper-to-beam yield strength ratios of the damper to the beam and the cross-sectional area of the damper, seismic performance characteristics, including initial stiffness, moment resistance, ductility, and energy dissipation capacity, are compared. According to the analysis results, the JTTD damper performs better than the JAPD damper, with moment resistance and energy dissipation of the JTTD model being approximately 10% and 5% higher than those of the JAPD model, respectively. Increasing the damper-to-beam yield strength ratio from 0.6 to 1.00 results in approximately a 35% increase in moment resistance of the models. In these models, increasing the cross-sectional area of the damper by 40% leads to a roughly 50% increase in connection moment resistance. The theoretical relationships estimate over 85% of the corresponding finite element analysis values, but for estimating the elastic stiffness of the models, the theoretical value should be divided by 3.5. Increasing the damper-to-beam yield strength ratio from 0.6 to 1.00 has no significant effect on energy dissipation, while ductility increases by about 25%.

کلیدواژه‌ها [English]

  • Energy Dissipater
  • Hysteretic Behavior
  • Buckling-Restrained
  • Plastic Deformation
  • Ductility
[1]. A.S. Whittaker, V.V. Bertero, C.L. Thompson, L.J. Alonso, Seismic testing of steel plate energy dissipation devices, Earthquake Spectra, 7 (4) (1991) 563–604.
[2]. M.R. Khoshkalam, M.H. Mortezagholi, S.M. Zahrai, Proposed Modification for ADAS Damper to Eliminate Axial Force and Improve Seismic Performance, Journal of Earthquake Engineering, 26 (2022) 5130–5152.
[3]. G. Terenzi, Novel design procedure for steel hysteretic dampers in seismic retrofit of frame structures, Engineering Structures, 284 (2023) 115969.
[4]. B. Jafari, B. Shekastehband, Cyclic Behavior of Hybrid Honeycomb- and- Flexural Yielding Dampers in Chevron CBFs, Journal of Civil and Environmental Engineering, 54(2) (2024) 13-24 in Persian.
[5]. E.S. Baraftabi, M.H.A Elizei, R. Esmaeilabadi, Numerical and experimental investigation of a new model of friction damper in diagonal brace under cyclic loading, Structures, 61 (2024) 105830.
[6]. F. Wang, M. Su, M. Hong, Y. Guo, S. Li, Cyclic behaviour of Y-shaped eccentrically braced frames fabricated with high-strength steel composite, Journal of Constructional Steel Research, 120 (2016) 176–187.
[7]. M.R. Eatherton, X. Ma, H. Krawinkler, D. Mar, S. Billington, J.F. Hajjar, G.G. Deierlein, Design Concepts for Controlled Rocking of Self-Centering Steel-Braced Frames, Journal of Structural Engineering (ASCE), 140 (2014) 04014082.
[8]. F. Wang, T.Y. Yang, Y. Cui, Energy-based seismic design and assessment of ductile linked rocking steel frame, Journal of Building Engineering, 73, (2023) 106753.
[9]. P.M. Clayton, J.W. Berman, L.N. Lowes, Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates, Journal of Constructional Steel Research, 106 (2015) 198-208.
[10]. S.H. Oh, Y.J. Kim, H.S. Ryu, Seismic performance of steel structures with slit dampers, Engineering structures, 31(9) (2009) 1997-2008.
[11]. A. Köken, M.A. Köroğlu, Experimental study on beam-to-column connections of steel frame structures with steel slit dampers, Journal of Performance of Constructed Facilities, 29 (2) (2013) 04014066.
[12]. H. Saffari, A.A. Hedayat, M. Poorsadeghi Nejad, Post-Northridge connections with slit dampers to enhance strength and ductility, Journal of Constructional Steel Research, 80 (2013) 138–152.
[13]. C.H. Lee, Y.K. Ju, J.K. Min, S.H. Lho, S.D. Kim, Non-uniform steel strip dampers subjected to cyclic loadings, Engineering Structures, 99 (2015) 192–204.
[14]. J. Lee, J. Kim, Development of box-shaped steel slit dampers for seismic retrofit of building structures, Engineering Structures, 150 (2017) 934–946.
[15]. A.H. Amiri, P.E. Najafabadi, H.E. Estekanchi, Experimental and analytical study of block slit damper, Journal of Constructional Steel Research, 141 (2018) 167–178.
[16]. K. Bayat, B. Shekastehband, Seismic performance of beam to column connections with T-shaped slit dampers, Thin-Walled Structures, 141 (2019) 28-46.
[17]. H.Y. Park, S.H. Oh, Design range of the damper of a T-stub damage-controlled system, Journal of Constructional Steel Research, 162 (2019) 105719.
[18]. H. Tagawa, Y. Nagoya, X. Chen, Bolted beam-to-column connection with buckling-restrained round steel bar dampers, Journal of Constructional Steel Research, 169 (2020) 106036.
[19]. H. Peng, J. Ou, S. Mahin, Design and numerical analysis of a damage-controllable mechanical hinge beam-to-column connection, Soil Dynamics and Earthquake Engineering, 133 (2020) 106149.
[20]. C. Peng, J. Pan, F. Hu, Z. Wang, Experimental investigation on earthquake-resilient steel beam-to-column joints with replaceable buckling-restrained fuses, Journal of Constructional Steel Research, 196 (2022) 107413.
[21]. T. Munkhunur, H. Tagawa, X. Chen, Steel rigid beam-to-column connections strengthened by buckling-restrained knee braces using round steel core bar dampers, Engineering Structures, 250 (2022) 113431.
[22]. Z. Zhai, Y. Liu, O. Mercan, S. Zou, F. Zhou, A hybrid buckling-restrained brace for enhancing the seismic performance of steel moment resisting frames, Soil Dynamics and Earthquake Engineering, 178 (2024) 108464.
[23]. Y. Lu, Y. Liu, Y. Wang, J. Liu, X. Huang, Development of a novel buckling-restrained damper with additional friction energy dissipation: Component tests and structural verification, Engineering Structures, 274 (2023) 115188.
[24]. AISC 341-22, “Seismic provisions for structural steel buildings”, Chicago, IL, USA: American Institute of Steel Construction, 2022.
[25]. H.Y. Park, S.H. Oh, Structural performance of beam system with T-stub type slit damper, Engineering Structures, 205 (2020) 109858.
[26]. Abaqus. Abaqus user manual (version 6.14), 2020.
[27]. Code No. 10. National Building Regulations, Steel Structures, Part 10, 2019.
[28]. M. Kojic, K.J. Bathe, Inelastic Analysis of Solids and Structures, Springer, London, 2005.
[29]. ASCE 41-23, Seismic Evaluation and Retrofit of Existing Buildings, ASCE Standard No. ASCE/SEI 41–23, American Society of Civil Engineers (ASCE), U.S., 2023.