مدلسازی عددی و بررسی اثر تغییرات پارامترهای مختلف در بازدهی و عملکرد حرارتی شمع انرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در سال‌های اخیر با رشد صنعت در جوامع مدرن، میزان مصرف انرژی در جهان رو به افزایش بوده است. به همین دلیل دولت‌ها و صاحبان صنایع در راستای تسهیل استفاده از منابع انرژی تجدیدپذیر اقدام به سرمایه گذاری کرده‌اند. انرژی زمین گرمایی یکی از منابع انرژی‌های تجدیدپذیر است که از اقتصادی‌ترین راه‌های بهره‌گیری از این انرژی، استفاده از سیستم‌های تبادل حرارت در شمع‌ها است. شمع‌ انرژی با استفاده از سیال تبادل حرارت و لوله‌های انتقال سیال، در فصل‌های گرم سال از دامنه خاکی جهت سرمایش و در فصل‌های سرد سال از انرژی گرمایی خاک جهت گرمایش استفاده می‌کند. پارامترهای زیادی در طراحی شمع‌انرژی‌ها دخیل هستند. در این پژوهش با استفاده از مدلسازی عددی سه بعدی و به روش المان محدود و با استفاده از نرم افزار COMSOL Multiphysics  به بررسی اثر هریک از این پارامتر‌ها در عملکرد حرارتی شمع انرژی می‌پردازیم. سرعت جریان سیال، طول شمع، قطر و ضخامت لوله و فاصله مرکز تا مرکز لوله‌های انتقال سیال از جمله پارامترهایی هستند که در این پژوهش مورد بررسی قرار گرفته‌اند. همچنین با استفاده از روش مطالعه آماری تاگوچی اثر پارامترهای مهم بر توان خروجی شمع انرژی، در کوتاه مدت و بلند مدت، مقایسه و رتبه بندی شدند. نتایج بدست آمده نشان دادند که کاهش سرعت جریان، افزایش طول شمع، کاهش قطر و ضخامت لوله موجب کاهش دمای سیال خروجی از شمع انرژی می‌شود. به علاوه نحوه قرارگیری لوله‌ها، طول شمع و فاصله مرکز تا مرکز لوله‌ها نسبت به دیگر پارامترها، مهمترین پارامترهای تاثیرگذار بر توان خروجی شمع انرژی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical modeling and analysis of the effect of different parameters on the efficiency and thermal performance of energy piles

نویسندگان [English]

  • Mohammad Hosain Sobhdam
  • Mohammad Mahdi Ahmadi
Department of Geotechnical engineering, Civil engineering faculty, Sharif university of technology, Tehran, Iran
چکیده [English]

In recent years, with the growth of industrial societies, the amount of energy consumption in the world has been increasing. On the other hand, the most consumed energy sources in the world are non-renewable energy sources. For this reason, governments and industries have invested in facilitating and making renewable energy sources cheaper. One of these renewable energies is geothermal energy, which is one of the most economical ways to use this energy, using heat exchange systems in piles and foundations. Various construction methods have been used to implement energy piles, and many parameters are involved in their design. In this research, the effect of each of these parameters on the thermal performance of the energy pile is investigated using 3D numerical modeling and using the finite element method with COMSOL. Flow rate, pile length, pipe diameter and thickness, and center-to-center distance of pipes are the parameters that have been investigated in this research. Also, by using the Taguchi method, the effect of important parameters on the output power of the energy pile, in the short and long term, was compared and ranked. The obtained results have shown that reducing the flow rate, increasing the length of the pile, and reducing the diameter and thickness of the pipe improve the thermal performance of the energy pile. In addition, pipe configuration, pile length, and the distance from the center to the center of the pipes compared to other parameters, are the most important parameters affecting the output power of the energy pile.

کلیدواژه‌ها [English]

  • Geothermal Energy - Energy Pile - Thermal Performance - Numerical Modeling
  • Taguchi Method
[1] P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. Matthews, Y. Chen, X. Zhou, M. Gomis, Global warming of 5/1 C, An IPCC,  (2018).
[2] IEA, Direct CO2 emissions from buildings-related heating by fuel in the Net Zero Scenario, 2010-2030, IEA, Paris https://www.iea.org/data-and-statistics/charts/direct-co2-emissionsfrom-buildings-related-heating-by-fuel-in-the-net-zero-scenario-2010-2030, IEA. Licence: CC BY 0/4.
[3] J. Fadejev, R. Simson, J. Kurnitski, F. Haghighat, A review on energy piles design, sizing and modelling, Energy, 122 (2017) 390-407.
[4] D.Y. Cherati, O. Ghasemi-Fare, Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences, Renewable and Sustainable Energy Reviews. 140 (2021).
[5] L. Laloui, M. Nuth, L. Vulliet, Experimental and numerical investigations of the behaviour of a heat exchanger pile, International journal for numerical and analytical methods in geomechanics, 30(8) (2006) 763-781.
[6] O. Ghasemi-Fare, P. Basu, Influences of ground saturation and thermal boundary condition on energy harvesting using geothermal piles, Energy and Buildings, 165 (2018) 340-351.
[7] F. Loveridge, W. Powrie, D. Nicholson, Comparison of two different models for pile thermal response test interpretation, Acta Geotechnica, 9 (2014) 367-384.
[8] E.H.N. Gashti, V.-M. Uotinen, K. Kujala, Numerical modelling of thermal regimes in steel energy pile foundations: A case study, Energy and buildings, 69 (2014) 165-174.
[9] S.L. Abdelaziz, C.G. Olgun, I. Martin, James R, Design and operational considerations of geothermal energy piles, in:  Geo-frontiers 2011: Advances in geotechnical engineering, 2011, pp. 450-459.
[10] F. Cecinato, F.A. Loveridge, Influences on the thermal efficiency of energy piles, Energy, 82 (2015) 1021-1033.
[11] S. Haridy, K. Alnaqbi, A. Radwan, M.G. Arab, Optimizing the thermal performance of energy piles using response surface methodology, Case Studies in Thermal Engineering, 41 (2023) 102637.
[12] N. Mehraeen, M.M. Ahmadi, O. Ghasemi-Fare, Numerical modeling of mixed convection near a vertical heat source in saturated granular soils, Geothermics. 106 (2022) 102566.
[13] S. You, X. Cheng, C. Yu, Z. Dang, Effects of groundwater flow on the heat transfer performance of energy piles: Experimental and numerical analysis, Energy and buildings, 155 (2017) 249-259.
[14] E.H.N. Gashti, M. Malaska, K. Kujala, Analysis of thermo-active pile structures and their performance under groundwater flow conditions, 105 (2015) 1–8.
[15] F. Najafian Jazi, O. Ghasemi-Fare, T.D. Rockaway, Natural convection effect on heat transfer in saturated soils under the influence of confined and unconfined subsurface flow, Applied Thermal Engineering. 237 (2024).
[16] M. Fattahian, M.H. Sobhdam, M.M. Ahmadi, Numerical modeling and analysis of the effect of surface groundwater flow and Natural Convection on the Heat Exchange of energy pile, Amirkabir Journal of Civil Engineering, 56(5) (2024) 6-6.
[17] Z. Mohamad, F. Fardoun, F. Meftah, A review on energy piles design, evaluation, and optimization, Journal of Cleaner Production, 292 (2021) 125802.
[18] B. Liang, M. Chen, Y. Orooji, Effective parameters on the performance of ground heat exchangers: A review of latest advances, Geothermics, 98 (2022) 102283.
[19] P. Cui, W. Yang, W. Zhang, K. Zhu, J.D. Spitler, M. Yu, Advances in ground heat exchangers for space heating and cooling: Review and perspectives, Energy and Built Environment, 5(2) (2024) 255-269.
[20] S. Park, C. Sung, K. Jung, B. Sohn, A. Chauchois, H. Choi, Constructability and heat exchange efficiency of large diameter cast-in-place energy piles with various configurations of heat exchange pipe, Applied thermal engineering, 90 (2015) 1061-1071.
[21] S. Park, D. Lee, H.-J. Choi, K. Jung, H. Choi, Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger), Energy, 81 (2015) 56-66.
[22] W. Yang, P. Lu, Y. Chen, Laboratory investigations of the thermal performance of an energy pile with spiral coil ground heat exchanger, Energy and Buildings, 128 (2016) 491-502.
[23] A. Carotenuto, P. Marotta, N. Massarotti, A. Mauro, G. Normino, Energy piles for ground source heat pump applications: Comparison of heat transfer performance for different design and operating parameters, Applied Thermal Engineering, 124 (2017) 1492-1504.
[24] Q.I. Alqawasmeh, G.A. Narsilio, N. Makasis, Impact of Geometrical Misplacement of Heat Exchanger Pipe Parallel Configuration in Energy Piles, Energies, 17(11) (2024) 2580.
[25] H. Ayaz, M. Faizal, A. Bouazza, Energy, economic, and carbon emission analysis of a residential building with an energy pile system, Renewable Energy, 220 (2024) 119712.
[26] S.W. Churchill, Friction-factor equation spans all fluid-flow regimes, (1977).
[27] T.Y. Ozudogru, C.G. Olgun, A. Senol, 3D numerical modeling of vertical geothermal heat exchangers, Geothermics, 51 (2014) 312-324.
[28] M.V. Lurie, Modeling of oil product and gas pipeline transportation, in:  Modeling of Oil Product and Gas Pipeline Transportation, 2009, pp. 1-214.
[29] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International chemical engineering, 16(2) (1976) 359-367.
[30] R. Caulk, E. Ghazanfari, J.S. McCartney, Parameterization of a calibrated geothermal energy pile model, Geomechanics for Energy and the Environment, 5 (2016) 1-15.
[31] S. You, X. Cheng, H. Guo, Z. Yao, In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers, Energy and buildings, 79 (2014) 23-31.
[32] H. Park, S.-R. Lee, S. Yoon, J.-C. Choi, Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation, Applied Energy, 103 (2013) 12-24.
[33] A.K. Sani, R.M. Singh, T. Amis, I. Cavarretta, A review on the performance of geothermal energy pile foundation, its design process and applications, Renewable and Sustainable Energy Reviews, 106 (2019) 54-78.
[34] Peace, Glen Stuart. "Taguchi methods: a hands-on approach." (No Title) (1993).                                
[35] Sadeghi, Habibollah, and Rao Martand Singh. "Driven precast concrete geothermal energy piles: Current state of knowledge." Building and environment 228 (2023): 109790.
[36] Di Donna, Alice, Francesco Cecinato, Fleur Loveridge, and Marco Barla. "Energy performance of diaphragm walls used as heat exchangers." Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 170, no. 3 (2017): 232-245.