تحلیل پایداری دینامیکی ستون‌های قاب تحت اثر جرم متمرکز و میرایی ذاتی با روش اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره) قزوین، ایران.

چکیده

تحلیل پایداری در ستون‌ها به‌عنوان اصلی‌ترین عضو سازه‌ای از جایگاه ویژه‌ای در تحقیقات مهندسی برخوردار است. در عمدة تحقیقات گذشته، عموماً پژوهشگران به مطالعه بارکمانشی استاتیکی در ستون‌های (منشوری یا غیر منشوری) در (قاب‌های ساختمانی یا سولة صنعتی) پرداخته‌اند. بارکمانشی استاتیکی تنها بیانگر ظرفیت بار بحرانی استاتیکی اعضا تحت بار ثقلی است. برای طراحی ایمن سازه لازم است که پایداری دینامیکی ستون‌ها در قاب‌های ساختمانی تحت بار قائم زلزله نیز بررسی گردد. در مقالة حاضر در مدلی جامع اثر توأمان میرایی ذاتی، جرم طبقه و بار قائم زلزله بر پایداری دینامیکی ستون‌ها در قاب‌های خمشی مهارنشده بررسی می‌شود. در واقع روش پیشنهادی تلفیقی از  مدل‌سازی استاتیکی ژولیان - لارنس و مدل‌سازی دینامیکی بولوتین برای لحاظ اثرات دینامیکی در ستون‌های قاب بر مبنای روش اجزاء محدود است. در گام نخست، با استفاده از روش همیلتون معادله متشکله استخراج می‌شود. در گام بعدی، پاسخ معادله با استفاده از روش اجزا محدود با توابع میان‌یابی از نوع درجه سه هرمیتی به‌ازای 50 جزء بررسی می‌شود. نتایج بیانگر این است که میرایی ذاتی، جرم متمرکز و سختی دورانی اتصالات نیمه‌سخت تأثیر قابل‌توجهی بر مقادیر فرکانس تشدید، طول مؤثر و ضریب بار دینامیکی بی‌بُعد دارند. با افزایش میرایی ذاتی، سختی دورانی و جرم متمرکز نمودار تغییرات طول موثر به سمت چپ محور فرکانس تحریک منتقل می‌شود. لحاظ اثر میرایی ذاتی و جرم متمرکز در مدلسازی به ترتیب 7% و 81 % بر تغییرات فرکانس تشدید تاثیرگذار است. تطابق قابل قبولی بین نتایج مقاله‌ی حاضر و تحقیق‌های پیشین برقرار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Dynamic Stability of Frame Columns under The Effect of Concentrated Mass and Inherent Damping by Finite Element Method

نویسندگان [English]

  • Amir Hossein Taherkhani
  • Majid Amin Afshar
Structural Engineering, Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Analysis of stability in columns as the main structural member has a special place in engineering research. In most of the past research, generally, researchers have studied the static buckling in columns (prismatic or non-prismatic) in building frames or industrial beams. Static load capacity only expresses the static critical load capacity of members under gravity load. For the safe design of the structure, it is necessary to check the dynamic stability of the columns in the building frames under the vertical load of an earthquake. In this article, in a comprehensive model, the combined effect of inherent damping, floor mass, and vertical earthquake load on the dynamic stability of columns in unrestrained moment frames is investigated. In fact, the proposed method is a combination of Julian-Lawrence static modeling and Bolotin dynamic modeling to consider the dynamic effects in the frame columns based on the finite element method. In the first step, the constitutive equation is extracted using Hamilton's method. In the next step, the response of the equation is checked using the finite element method with Hermitian three-degree interpolation functions for 50 components. The results show that the inherent damping, concentrated mass, and rotational stiffness of semi-rigid joints have a significant effect on the resonance frequency, effective length, and dimensionless dynamic load factor. With the increase in inherent damping, rotational stiffness, and concentrated mass, the graph of effective length changes is shifted to the left side of the excitation frequency axis. Considering the effects of inherent damping and concentrated mass in the modeling, 7% and 81%, respectively, affect the resonance frequency changes. There is an acceptable agreement between the results of the present article and previous research.

کلیدواژه‌ها [English]

  • Dynamic Buckling
  • Dynamic Stability
  • Effective Length
  • Critical Load Capacity
  • Analysis Eigenvalue
  1. Chen, W.-K., Stability design of steel frames, CRC Press, 2018.
  2. Julian, O., Lawrence, L., Notes on J and L nomograms for determination of effective lengths, Unpublished report, 1959.
  3. Cedolin, L., Stability of structures: elastic, inelastic, fracture and damage theories, World Scientific, 2010.
  4. Wang, C.M., Wang, C.Y., Exact solutions for buckling of structural members, CRC Press, 2004.
  5. Saffari, H., Rahgozar, R., Jahanshahi, R., "An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members", Journal of Constructional Steel Research, 64(4), 2008, pp. 400–406.
  6. Rahai, A., Kazemi, S., "Buckling analysis of non-prismatic columns based on modified vibration modes", Communications in Nonlinear Science and Numerical Simulation, 13(8), 2008, pp. 1721–1735.
  7. Valipour, H.R., Bradford, M.A., "A new shape function for tapered three-dimensional beams with flexible connections", Journal of Constructional Steel Research, 70, 2012, pp. 43–50.
  8. Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T., "Stability of steel columns with non-uniform cross-sections", The Open Construction & Building Technology Journal, 6(1), 2012.
  9. Trinh, L.C., Vo, T.P., Thai, H.-T., Nguyen, T.-K., "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Composites Part B: Engineering, 100, 2016, pp. 152–163.
  10. Babaei, B.F., Behjat, B., Analysis of Euler-Bernoulli Beam on Elastic Foundation Considering Nonlocal Effects in Nano Scale, 2017.
  11. Safavi, A., Haghollahi, A., Sahebi, M.M., "Elastic Flexural Buckling Load for Tapered Columns in Gabled Frames for State of Free to Sway with Finite Differences and Virtual Work Methods", Journal of Structure & Steel, 2017.
  12. Soltani, M., Sistani, A., Asgarian, B., "Stability Analysis of Non-prismatic Columns Using the Combination of Power Series Method and McLaurin Expansion", Journal of Structure & Steel, 12(24), 2018, pp. 29–40.
  13. Soltani, M., Asgarian, B., "Determination of lateral-torsional buckling load of simply supported prismatic thin-walled beams with mono-symmetric cross-sections using the finite difference method", Amirkabir Journal of Civil Engineering, 50(1), 2018, pp. 23–26.
  14. Bolotin, V., Dynamic stability of elastic systems, 1962.
  15. Pradhan, S., Phadikar, J., "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Structural Engineering and Mechanics, 33(2), 2009, pp. 193–213.
  16. Ghannadpour, S., Mohammadi, B., Fazilati, J., "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Composite Structures, 96, 2013, pp. 584–589.
  17. Ghiasian, S., Kiani, Y., Eslami, M., "Nonlinear thermal dynamic buckling of FGM beams", European Journal of Mechanics-A/Solids, 54, 2015, pp. 232–242.
  18. Gao, K., Gao, W., Wu, D., Song, C., "Nonlinear dynamic stability analysis of Euler–Bernoulli beam–columns with damping effects under thermal environment", Nonlinear Dynamics, 90, 2017, pp. 2423–2444.
  19. Jalaei, M., Arani, A.G., Tourang, H., "On the dynamic stability of viscoelastic graphene sheets", International Journal of Engineering Science, 132, 2018, pp. 16–29.
  20. Zhang, G., Wu, Z., Li, Y., "Nonlinear dynamic analysis of fractional damped viscoelastic beams", International Journal of Structural Stability and Dynamics, 19(11), 2019, 1950129.
  21. Lei, J.-S., Kim, B., Li, L.-Y., "Dynamic instability analysis of axially compressed castellated columns", International Journal of Steel Structures, 20, 2020, pp. 559–566.
  22. Bambaeechee, M., Paseban, G., "Nonlinear stability analysis of non-prismatic simple steel frames with flexible supports and semi-rigid connection", Journal of Structural and Construction Engineering, 7(Special Issue 3), 2020, pp. 239–258.
  23. Sharma, P., Singh, R., Hussain, M., "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 2020, pp. 1085–1101.
  24. Akbaş, Ş.D., "Forced Vibration Responses of Axially Functionally Graded Beams by using Ritz Method", Journal of Applied and Computational Mechanics, 7(1), 2021, pp. 109–115.
  25. Arda, M., Aydogdu, M., "A Ritz formulation for vibration analysis of axially functionally graded Timoshenko-Ehrenfest beams", Journal of Computational Applied Mechanics, 53(1), 2022, pp. 102–115.
  26. Savin, S., Stoian, V., Petcu, D., "Experimental and Numerical Study of the Stability Failure of Reinforced Concrete Frame with Slender Columns under Corner Column Removal Scenario", Buildings, 2023.
  27. Kadhim, A.S., Al-Zaidee, M.S., "3D Finite Element Modelling of the Structural Behaviour of Tapered Reinforced Concrete Columns", Journal of Mechanics of Materials and Structures, 2023.
  28. Özil, M., Erdol, R., Gurel, M.A., "Dynamic Stability Analysis of Diamond Frame Structures by Finite Element Method", Structural Engineering and Mechanics, 2023.
  29. Nie, X., Ma, Z., Zhu, W., "Finite Element Analysis of the Deterioration of Axial Compression Behavior of Corroded Steel-Reinforced Concrete Columns", Reliability and Maintainability of Structures, 2024.
  30. Fonseca, A., "Stability Analysis of Steel Columns with Uniform and Non-Uniform Hollow Square Sections under Axial Compression", Journal of Civil and Hydraulic Engineering, 2(2), 2024.
  31. Code of Design of Buildings Against Earthquake (Standard 2800) – Fourth edition, (In Persian).
  32. National Building Regulations, Loads on Buildings – The Sixth Topic, Ministry of Housing and Urban Development, 2018, (In Persian).
  33. National Building Regulations, Design and Implementation of Steel Buildings – Chapter 10, Ministry of Housing and Urban Development, 2022, (In Persian).
  34. Chopra, A.K., McKenna, F., "Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation", Earthquake Engineering & Structural Dynamics, 45(2), 2016, pp. 193–211.
  35. Carr, A., Puthanpurayil, A., Lavan, O., Dhakal, R., "Damping models for inelastic time history analysis: a proposed modelling approach", 16th World Conference in Earthquake Engineering, Santiago, 2017, pp. 1488.
  36. Muller, D.E., "A method for solving algebraic equations using an automatic computer", Mathematical Tables and Other Aids to Computation, 10(56), 1956, pp. 208–215.