[1] R. W. Wohleber, G. Matthews, G. J. Funke, and J. Lin, “Considerations in Physiological Metric Selection for Online Detection of Operator State: A Case Study,” in Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, vol. 9743, D. D. Schmorrow and C. M. Fidopiastis, Eds., in Lecture Notes in Computer Science, vol. 9743. , Cham: Springer International Publishing, 2016, pp. 428–439. doi: 10.1007/978-3-319-39955-3_40.
[2] M. J. Parsa, M. Javadi, and A. H. Mazinan, “Fatigue level detection using multivariate autoregressive exogenous nonlinear modeling based on driver body pressure distribution,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 236, no. 1, pp. 168–184, Jan. 2022, doi: 10.1177/09544070211014290.
[3] R. E. P. Soares, “Driver monitoring systems of fatigue based on eye tracking,” PhD Thesis, 2017. Accessed: Apr. 24, 2024. [Online]. Available: https://repositorium.sdum.uminho.pt/handle/1822/54750
[4] G. Matthews, R. Wohleber, J. Lin, G. Funke, and C. Neubauer, “Monitoring Task Fatigue in Contemporary and Future Vehicles: A Review,” in Advances in Human Factors in Simulation and Modeling, vol. 780, D. N. Cassenti, Ed., in Advances in Intelligent Systems and Computing, vol. 780. , Cham: Springer International Publishing, 2019, pp. 101–112. doi: 10.1007/978-3-319-94223-0_10.
[5] H. Singh, J. S. Bhatia, and J. Kaur, “Eye tracking based driver fatigue monitoring and warning system,” in India International Conference on Power Electronics 2010 (IICPE2010), IEEE, 2011, pp. 1–6. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5728062/
[6] J. Xu, J. Min, and J. Hu, “Real‐time eye tracking for the assessment of driver fatigue,” Healthc. technol. lett., vol. 5, no. 2, pp. 54–58, Apr. 2018, doi: 10.1049/htl.2017.0020.
[7] R. Bhardwaj, P. Natrajan, and V. Balasubramanian, “Study to determine the effectiveness of deep learning classifiers for ECG based driver fatigue classification,” in 2018 IEEE 13th international conference on industrial and information systems (ICIIS), IEEE, 2018, pp. 98–102. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8721391/
[8] L. Wang, H. Wang, and X. Jiang, “A new method to detect driver fatigue based on EMG and ECG collected by portable non-contact sensors,” Promet-Traffic&Transportation, vol. 29, no. 5, pp. 479–488, 2017.
[9] R. Bhardwaj, S. Parameswaran, and V. Balasubramanian, “Comparison of Driver Fatigue Trend on simulator and on-road driving based on EMG correlation,” in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), IEEE, 2018, pp. 94–97. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8721431/
[10] X. Hu and G. Lodewijks, “Exploration of the effects of task-related fatigue on eye-motion features and its value in improving driver fatigue-related technology,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 80, pp. 150–171, Jul. 2021, doi: 10.1016/j.trf.2021.03.014.
[11] S. Ananthi, R. Sathya, K. Vaidehi, and G. Vijaya, “Drivers Drowsiness Detection using Image Processing and I-Ear Techniques,” presented at the 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2023, pp. 1326–1331.
[12] M. Hossain, M. Hasan, K. Abid, and S. Ahmed, “Developing an Image Processing Based Real-Time Driver Drowsiness Detection System,” International Journal of Scientific and Research Publications, vol. 13, Apr. 2023, doi: 10.29322/IJSRP.13.04.2023.p13622.
[13] J. Jose, J. S. Vimali, P. Ajitha, S. Gowri, A. Sivasangari, and B. Jinila, “Drowsiness Detection System for Drivers Using Image Processing Technique,” in 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Jun. 2021, pp. 1527–1530. doi: 10.1109/ICOEI51242.2021.9452864.
[14] V. Naren Thiruvalar and E. Vimal, “A comparative analysis on driver drowsiness detection using CNN,” International Journal of Nonlinear Analysis and Applications, Dec. 2021, doi: 10.22075/ijnaa.2021.5894.
[15] K. Balasubramanian, G. D. K, and Ramya, “Drowsiness detection and safety monitoring using image processing”, doi: 10.6703/IJASE.202209_19(3).001.
[16] Y. Albadawi, A. AlRedhaei, and M. Takruri, “Real-Time Machine Learning-Based Driver Drowsiness Detection Using Visual Features,” Journal of Imaging, vol. 9, no. 5, Art. no. 5, Apr. 2023, doi: 10.3390/jimaging9050091.
[17] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, Ieee, 2001, p. I–I. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/990517/
[18] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, May 2004, doi: 10.1023/B:VISI.0000013087.49260.fb.
[19] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error: Automatic detection of tracking failures,” in 2010 20th international conference on pattern recognition, IEEE, 2010, pp. 2756–2759. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/5596017/
[20] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004, doi: 10.1023/B:VISI.0000029664.99615.94.
[21] N. Neshov and A. Manolova, “Drowsiness monitoring in real-time based on supervised descent method,” in 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, 2017, pp. 660–663. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8095173/
[22] B. Akrout and W. Mahdi, “Yawning detection by the analysis of variational descriptor for monitoring driver drowsiness,” in 2016 International Image Processing, Applications and Systems (IPAS), IEEE, 2016, pp. 1–5. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7880127/
[23] C.-H. Weng, Y.-H. Lai, and S.-H. Lai, “Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network,” in Computer Vision – ACCV 2016 Workshops, vol. 10118, C.-S. Chen, J. Lu, and K.-K. Ma, Eds., in Lecture Notes in Computer Science, vol. 10118. , Cham: Springer International Publishing, 2017, pp. 117–133. doi: 10.1007/978-3-319-54526-4_9.
[24] R. M. Salman, M. Rashid, R. Roy, M. M. Ahsan, and Z. Siddique, “Driver Drowsiness Detection Using Ensemble Convolutional Neural Networks on YawDD,” Dec. 19, 2021, arXiv: arXiv:2112.10298. Accessed: Apr. 24, 2024. [Online]. Available: http://arxiv.org/abs/2112.10298.
[25] S. Eskandari, A.M.Rahimi, E.R.Khansari, “Study of cognitive variables for driver fatigue to reduce severity and prevent accidents,” Master's Thesis, Department of Engineering, University of Zanjan, pp.34-42, Aug 2023.