ارزیابی خواص بتن‌های خودتراکم حاوی سرباره کارخانه فولاد اهواز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد قشم، دانشگاه آزاد اسلامی، قشم، ایران

2 گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

بتن خودتراکم، بتنی است که همزمان سه ویژگی، توانایی جریان تحت وزن خود، پر کردن فضای کامل قالب و ایجاد یک مخلوط چگال و نسبتا همگن را بدون نیاز به عملیات تراکم را داشته باشد. سرباره کارخانه فولاد اهواز استفاده گردید. این سرباره در ترکیبات شیمیایی خود تفاوت قابل‌‌توجهی با سرباره‌‌های متداول در دنیا دارد و به همین دلیل، در ساخت بتن خودتراکم استفاده گردید. در ساخت نمونه‌ها %25، %35، %45، %50 و %60 پودر سرباره، جایگزین بخشی از سیمان شد و نمونه‌‌ها در سنین 28، 56، 91 و120 روزه آزمایش شدند. آزمایش‌‌های مربوط به رئولوژی بتن شامل جریان اسلامپ، قیف  Vو جعبه L انجام شدند. مقاومت‌‌ فشاری و آزمایش ضریب ارتجاعی استاتیکی از خواص مکانیکی و آزمایش‌‌های مرتبط با دوام شامل مقاومت الکتریکی، عمق نفوذ آب و جذب حجمی آب انجام گردیدند. طبق آزمایش‌‌های انجام‌شده، درصد بهینه پودر مصرفی به میزان %25 تعیین شد. آزمایش اسلامپ نمونه حاوی درصد بهینه پودر سرباره، افزایش %14 را نسبت به نمونه مرجع نشان داد. در آزمایش مقاومت فشاری، نمونه‌‌های حاوی درصد بهینه پودر سرباره در  سن 120 روزه، نسبت به نمونه مرجع افزایش داشتند. بررسی نتایج عمق نفوذ آب و همین‌‌طور درصد جذب حجمی آب %4 افزایش را نشان دادند. ضریب ارتجاعی استاتیکی نمونه‌های حاوی درصد بهینه پودر سرباره به مقدار %4/8 نسبت به نمونه مرجع در سن 120روزه افزایش داشتند. بررسی نتایج عمق نفوذ آب و درصد جذب حجمی آب در نمونه‌های حاوی درصد بهینه پودر سرباره، به ترتیب به میزان %12/5 و %16/6 در سن 120روزه، کاهش نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Properties of Self-Compacting Concrete Containing Slag from Ahvaz Steel Plant

نویسندگان [English]

  • Seyed Mohsen Kalvandi 1
  • SeyedFatollah Sajedi 2
  • Fereidoon Moghadas Nejad 3
1 Department of Civil Engineering, Qeshm Branch, Islamic Azad University, Qeshm, Iran
2 Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Department of Civil and Environmental Engineering, AUT (Tehran Polytechnic), Tehran, Iran
چکیده [English]

Self-compacting concrete (SCC) is concrete that simultaneously has three characteristics: the ability to flow under its own weight, fill the entire mold space, and create a dense and relatively homogeneous mixture without the need for compaction. Slag from the Ahvaz Steel Plant was used. This slag has a significant difference in its chemical composition from common slags in the world, and for this reason, it was used in the manufacture of SCC. In the manufacture of samples, 25%, 35%, 45%, 50%, and 60% of slag powder replaced part of the cement, and the samples were tested at ages of 28, 56, 91, and 120 days. Concrete rheology tests including slump flow, V-funnel, and L-box were performed. Compressive strength and static modulus of elasticity (EC) tests were performed, and durability tests including electrical resistance, water penetration depth, and volumetric water absorption were performed. According to the tests performed, the optimal percentage of powder used was determined to be 25%. The slump test of the sample containing the optimal percentage of slag powder showed an increase of 14% compared to the reference sample. In the compressive strength test, the samples containing the optimal percentage of slag powder showed an increase of 4% compared to the reference sample at the age of 120 days. The results showed an increase in the water penetration depth and the volumetric water absorption percentage by 4%. The EC of the samples containing the optimal percentage of slag powder increased by 4.8% compared to the reference sample at the age of 120 days. The results showed a decrease in the water penetration depth and the volumetric water absorption percentage in the samples containing the optimal percentage of slag powder by 12.5% ​​and 16.6%, respectively, at the age of 120 days.

کلیدواژه‌ها [English]

  • Self-Compacting Concrete
  • Ahvaz Steel Plant Slag
  • Rheology
  • Mechanical Properties
  • Durability
[1] E.P. Koehler, Aggregates in self-consolidating concrete, The University of Texas at Austin, 2007.
[2] H. Okamura, Self-compacting high-performance concrete, Concrete international, 19(7) (1997) 50-54.
[3] H. Okamura, M. Ouchi, Self-compacting concrete, Journal of advanced concrete technology, 1(1) (2003) 5-15.
[4] F. Ghaffari-Moghaddam, Investigation of the effect of nanomaterials on the properties of self-compacting concrete, in:  Second Nanotechnology Student Conference, Isfahan, 2007.
[5] G. De Schutter, P.J. Bartos, P. Domone, J. Gibbs, Self-compacting concrete, Whittles Publishing Caithness, 2008.
[6] A.K. Shirzadi Javid, B. Rahmati, A New Method of Mix Design for Self-Consolidating Concrete Based on Compressive Strength, Concrete Research, 6(1) (2013) 87-102.
[7] D. Mostofinejad, D. of Civil Engineering, Adding Slag and Limestone Powder to Concrete to Increase the Durability of Concrete in Sulfate Environment, Journal of Transportation Research, 3(2) (2006).
[8] D. Brindha, T. Baskaran, S. Nagan, Assessment of corrosion and durability characteristics of copper slag admixed concrete, International journal of civil and structural engineering, 1(2) (2010) 192.
[9] S.K. Rao, P. Sravana, T.C. Rao, Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand, International Journal of Pavement Research and Technology, 9(4) (2016) 289-301.
[10] R.T. Flynn, T.J. Grisinger, B. Mather, R. Hooton, G. Dewey, M. Luther, M. Thomas, Slag Cement in Concrete and Mortar, American Concrete Institute: Farmington Hills, MI, USA,  (2003).
[11] C. Ozyildirim, Laboratory investigation of low-permeability concretes containing slag and silica fume, Materials Journal, 91(2) (1994) 197-202.
[12] P. Tikalsky, V. Schafer, K. Wang, B. Scheetz, T. Rupnow, A. St Clair, M. Siddiqi, S. Marquez, Development of Performance Properties of Ternary Mixtures: Phase I Final Report, United States. Federal Highway Administration, 2007.
[13] V. Sivasundaram, V. Malhotra, Properties of concrete incorporating low quantity of cement and high volumes of ground granulated slag, Materials Journal, 89(6) (1992) 554-563.
[14] R.D. Hooton, J.J. Emery, Sulfate resistance of a Canadian slag cement, Materials Journal, 87(6) (1990) 547-555.
[15] E.E. Hekal, E. Kishar, H. Mostafa, Magnesium sulfate attack on hardened blended cement pastes under different circumstances, Cement and Concrete Research, 32(9) (2002) 1421-1427.
[16] I.N.S. Organization, Cement - Determination of Compressive and Flexural Strength, in: Iranian National Standard No. 393, Iranian Standards and Industrial Research Institute, 2009.
[17] S. Sajedi, F. Darash, Experimental Study of Workability and Mechanical Properties of Concrete Containing Powder Glass and Mineral Waste Glass with Separate and Simultaneous Applications, Amirkabir Journal of Civil Engineering, 50(6) (2019) 1155-1176.
[18] M. Pattengil, T. Shutt, Use of ground glass as a pozzolan; Albuquergue symposiums on Utilization of Waste Glass in Secondary Products, Albuquerque, New Mexico, USA,  (1973).
[19] A.S. C127, Test method for specific gravity and absorption of coarse aggregate, in, ASTM International West Conshohocken, PA, 2001.
[20] B. Ahmadi, M. Shekarchi, Use of natural zeolite as a supplementary cementitious material, Cement and Concrete Composites, 32(2) (2010) 134-141.
[21] B.S.I. . .“Methods of testing fresh concrete.”,  (1970).
[22] C.o.M.i.C. ACI Committee 222, Protection of metals in concrete against corrosion, in, American Concrete Institute, 2001.
[23] M. Mazloom, A. Ramezanianpour, J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete, Cement and concrete composites, 26(4) (2004) 347-357.
[24] A. Standard, ASTM C172/C172M-17: Standard practice for sampling freshly mixed concrete, in, 2017.
[25] A. Khani, Shafaei, J, Tadayin, M, Sajjadi Attar, S, M, Investigation of self-compacting concretes containing microsilica and slag pozzolan with durability approach by electrical conductivity test, in:  9th National Conference on Modern Materials and Structures in Engineering, 2022.
[26] S.A. Hosseini-Pool, Ghasemzadeh Mousavinejad, S. H, Combined effects of three types of granulation of blast furnace slag and electric arc furnace slag on mechanical strength and durability of self-compacting concrete, in:  10th National Conference on Civil Engineering, Architecture and Sustainable Urban Development of Iran, 2022.
[27] S.M. Homayounfar, Ghodousian, A, Study of adhesion of repair fibrous self-compacting concrete containing microsilica, zeolite and slag pozzolans to old concrete using slant-shear method, in:  2nd International Conference on Architecture, Civil Engineering, Urban Development, Environment and Horizons of Islamic Art in the Second Step of the Revolution Declaration, Tabriz, 2022.
[28] P. Ebadi, Khaki, V., Badrloo, S., Hosseini Mianposhte, M., High durability and strength in lightweight self-compacting concrete with slag, microsilica and light pozzolanic sand, in:  2nd International Congress of Civil Engineering, Architecture, Building Materials and Environment, 2022.
[29] A. Rahmati, Saki, V., Lak, M., Shayesteh Nam, H., Investigation and study on blended cements containing slag and its activation with silica fume with different percentages in self-compacting concrete and its effect on mechanical properties, durability and performance of fresh and hardened concrete, in:  20th Concrete Day Conference and 14th National Concrete Conference, Tehran, 2022.
[30] M. Mirzaie Aliabadi, m. hamednezhad, a. dadpour, Experimental study of Fresh and hardened properties of self-compacting concrete containing coarse and fine electric arc furnace slag aggregate, Journal of Structural and Construction Engineering, 8(Special Issue 1) (2021) 86-110.
[31] M. Hosseini, Juma, N., Design and investigation of rheology and durability of self-compacting lightweight concrete containing two or more mixtures of slag, fly ash and microsilica, in:  Second National Conference on Concrete Durability, Tehran, 2021.
[32] S.F. Sajedi, S.H. Hashemi, Experimental study of the effect of slag of Ahvaz Steel Plant on the properties of cement-slag mortars, Amirkabir Journal of Civil Engineering, 54(9) (2022) 3557-3580.
[33] A. Heydari, Taheri Sarteshnezi, M., Investigation of the effect of blast furnace and converter slag from Isfahan Iron and Steel Works on the compressive strength of high-strength self-compacting concrete, in:  8th National Civil Engineering Congress, Babol, 2014.
[34] J. Afiti Salim, Razm Ara, P., Saeedi Jam, S., Effect of slag replacement on the properties of self-compacting concrete containing recycled coarse aggregates, Concrete Research, (Issue 11(2)) (2018) pp. 105-116.
[35] y. zandi, m. abedi, Evaluation of the effect of magnetic water on the durability of Concrete made of cast iron slag, Journal of Structural and Construction Engineering, 8(7) (2021) 195-213.
[36] A. Standard, ASTM A511, Standard Specification for Seamless Stainless Steel Mechanical Tubing, in, ASTM International, 2018.
[37] A. Standard, C128-12, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA,  (2012).