[1] J.M. Ko, Y.Q. Ni, Technology developments in structural health monitoring of large-scale bridges, Engineering Structures, 2005, pp. 1715-1725.
[2] F. Magalhães, A. Cunha, E. Caetano, Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection, Mechanical Systems and Signal Processing, 2012, pp. 212-228.
[3] A.B. Noel, A. Abdaoui, T. Elfouly, M.H. Ahmed, A. Badawy, M.S. Shehata, Structural Health Monitoring Using Wireless Sensor Networks: A Comprehensive Survey, IEEE Communications Surveys and Tutorials, 2017, pp. 1403-1423.
[4] S. Teng, G. Chen, P. Gong, G. Liu, F. Cui, Structural damage detection using convolutional neural networks combining strain energy and dynamic response, Meccanica, Springer Netherlands, 2020, pp. 945-959.
[5] C.R. Farrar, S.W. Doebling, D.A. Nix, Vibration-based structural damage identification, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, pp. 131-149.
[6] W. Fan, P. Qiao, Vibration-based damage identification methods: A review and comparative study, Structural Health Monitoring, SAGE PublicationsSage UK: London, England, 2011, pp. 83-111.
[7] S. Das, P. Saha, S.K. Patro, Vibration-based damage detection techniques used for health monitoring of structures: a review, Journal of Civil Structural Health Monitoring, 6(3) (2016) 477-507.
[8] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D.J. Inman, Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, Journal of Sound and Vibration, Elsevier, 2017, pp. 154-170.
[9] H. Liu, Y. Zhang, Deep learning-based brace damage detection for concentrically braced frame structures under seismic loadings, Advances in Structural Engineering, 2019, pp. 3473-3486.
[10] L. Jing, M. Zhao, P. Li, X. Xu, A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox, Measurement: Journal of the International Measurement Confederation, Elsevier B.V., 2017, pp. 1-10.
[11] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016, pp. 770-778.
[12] J. Han, H. Chen, N. Liu, C. Yan, X. Li, CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion, IEEE Transactions on Cybernetics, 2018, pp. 3171-3183.
[13] T.N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mohamed, G. Dahl, B. Ramabhadran, Deep Convolutional Neural Networks for Large-scale Speech Tasks, Neural Networks, 64 (2015) 39-48.
[14] F. Ordóñez, D. Roggen, Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition, Sensors, 2016, pp. 115.
[15] S. Kiranyaz, T. Ince, M. Gabbouj, Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks, IEEE Transactions on Biomedical Engineering, 2016, pp. 664-675.
[16] W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load, Mechanical Systems and Signal Processing, 2018, pp. 439-453.
[17] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, D.J. Inman, 1D convolutional neural networks and applications: A survey, Mechanical Systems and Signal Processing, The Author(s), 2021, pp. 107398.
[18] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, M. Gabbouj, 1-D Convolutional Neural Networks for Signal Processing Applications, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019, pp. 8360-8364.
[19] S. Sony, K. Dunphy, A. Sadhu, M. Capretz, A systematic review of convolutional neural network-based structural condition assessment techniques, Engineering Structures, Elsevier Ltd, 2021.
[20] C. Modarres, N. Astorga, E.L. Droguett, V. Meruane, Convolutional neural networks for automated damage recognition and damage type identification, Structural Control and Health Monitoring, John Wiley and Sons Ltd, 2018, pp. e2230.
[21] A.S.M. Shihavuddin, X. Chen, V. Fedorov, A.N. Christensen, N.A.B. Riis, K. Branner, A.B. Dahl, R.R. Paulsen, Wind turbine surface damage detection by deep learning aided drone inspection analysis, Energies, MDPI AG, 2019, pp. 676.
[22] K. Lee, N. Byun, D.H. Shin, A Damage Localization Approach for Rahmen Bridge Based on Convolutional Neural Network, KSCE Journal of Civil Engineering, 2020.
[23] Y. Yu, C. Wang, X. Gu, J. Li, A novel deep learning-based method for damage identification of smart building structures, Structural Health Monitoring, 2019, pp. 143-163.
[24] B.K. Oh, S.H. Lee, H.S. Park, Damage localization method for building structures based on the interrelation of dynamic displacement measurements using convolutional neural network, Structural Control and Health Monitoring, 2020, pp. 1-16.
[25] Y.-z. Lin, Z.-h. Nie, H.-w. Ma, Structural Damage Detection with Automatic Feature-Extraction through Deep Learning, Computer-Aided Civil and Infrastructure Engineering, 32(12) (2017) 1025-1046.
[26] T. Zhang, S. Biswal, Y. Wang, SHMnet: Condition assessment of bolted connection with beyond human-level performance, Structural Health Monitoring, 2020, pp. 1188-1201.
[27] M. Azimi, G. Pekcan, Structural health monitoring using extremely compressed data through deep learning, Computer-Aided Civil and Infrastructure Engineering, 2020, pp. 597-614.
[28] H.V. Dang, M. Raza, T.V. Nguyen, T. Bui-Tien, H.X. Nguyen, Deep learning-based detection of structural damage using time-series data, Structure and Infrastructure Engineering, Taylor & Francis, 2020, pp. 1-20.
[29] Z. Mousavi, M.M. Ettefagh, M.H. Sadeghi, S.N. Razavi, Developing deep neural network for damage detection of beam-like structures using dynamic response based on FE model and real healthy state, Applied Acoustics, Elsevier Ltd, 2020, pp. 107402.
[30] T. Guo, L. Wu, C. Wang, Z. Xu, Damage detection in a novel deep-learning framework: a robust method for feature extraction, Structural Health Monitoring, 2020, pp. 424-442.
[31] O. Avci, O. Abdeljaber, S. Kiranyaz, D. Inman, Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications, Conference Proceedings of the Society for Experimental Mechanics Series, 2017, pp. 49-54.
[32] O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, D.J. Inman, Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks, Journal of Sound and Vibration, Elsevier Ltd, 2018, pp. 158-172.[33] O. Abdeljaber, O. Avci, M.S. Kiranyaz, B. Boashash, H. Sodano, D.J. Inman, 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data, Neurocomputing, Elsevier B.V., 2018, pp. 1308-1317.
[34] O. Avci, O. Abdeljaber, S. Kiranyaz, D. Inman, Convolutional Neural Networks for Real-Time and Wireless Damage Detection, in, 2020, pp. 129-136.
[35] O. Abdeljaber, A. Younis, O. Avci, N. Catbas, M. Gul, O. Celik, H. Zhang, Dynamic Testing of a Laboratory Stadium Structure, Geotechnical and Structural Engineering Congress 2016, American Society of Civil Engineers, Reston, VA, 2016, pp. 1719-1728.
[36] X. Glorot, A. Bordes, Y. Bengio, Deep Sparse Rectifier Neural Networks, in, JMLR Workshop and Conference Proceedings, 2011, pp. 315-323.
[37] V. Nair, G.E. Hinton, Rectified linear units improve Restricted Boltzmann machines, ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010, pp. 807-814.
[38] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, 2017, pp. 84-90.
[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, 2014, pp. 1929-1958.
[40] B.Y. Goodfellow lan, Courville Aaron, Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville - Google Books, MIT Press, 2016, pp. 800.
[41] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, International Conference on Learning Representations, ICLR, 2015.
[42] R. Doroudi, S.H.H. Lavassani, M. Shahrouzi, Damage detection for long-span bridges through support vector machine, wavelet transform, and multivariate empirical mode decomposition, Int. J. Struct. Eng., 14(2) (2024) 164-185.