ارزیابی اثر مهاربند‌های کمانش‌تاب بر منحنی‌های ‌شکنندگی لرزه‌ای سازه‌ای و غیر‌سازه‌ای قاب‌های ساختمانی فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

منحنی‌های شکنندگی لرزه‌ای ابزاری هستند که نشان‌دهنده رابطه بین اندازه زمین‌لرزه و خسارت ناشی از آن می‌باشند. این منحنی‌ها در واقع احتمال فراگذشت یک یا چند شاخص خسارت را از مقادیر حدی آنها به صورت تابعی از شدت‌های مختلف زلزله مشخص می‌سازند. از جمله پارامترهای پاسخ مهندسی که می‌تواند معیار و شاخصی برای خرابی و عملکرد اجزای سازه‌ای و غیرسازه‌ای و همچنین آسایش ساکنین باشد، بیشینه جابه‌جایی نسبی بین طبقه‌ای و شتاب کل (مطلق) طبقات ساختمان است. هدف از این پژوهش، تهیه و ارزیابی منحنی‌های شکنندگی براساس دو پارامتر پاسخ فوق در سطوح مختلف عملکردی اجزای سازه‌ای و غیرسازه‌ای حساس به جابجایی و شتاب قاب‌های ساختمانی فولادی مجهز به مهاربندهای کمانش‌تاب (BRB) می‌باشد. برای این منظور از تحلیل دینامیکی افزایشی (IDA) مدل‌ اجزای محدود قاب‌ ده طبقه در نرم افزار اپنسیس با مفسر پایتون تحت 44 رکورد زلزله حوزه دور FEMA-P695  استفاده شده است. مقایسه منحنی‌های شکنندگی قاب بدون مهاربند و دارای مهاربند کمانش‌تاب نشان داد که در هرچهارسطح آسیب خفیف، ملایم، وسیع و کامل، افزودن مهاربند کمانش‌تاب همواره موجب کاهش قابل توجه احتمال آسیب اجزای سازه‌ای و غیرسازه‌ای حساس به جابجایی می‌شود؛ ولی در مورد اجزای غیرسازه‌ای حساس به ‌شتاب نه‌ تنها افزودن مهاربند موجب کاهش احتمال آسیب نمی‌شود، بلکه در مواردی اندکی نیز احتمال خرابی افزوده می‌شود. براساس نتایج این تحقیق می‌توان در مورد تاثیر مهاربند کمانش‌تاب بر احتمال آسیب اجزای سازه‌ای و غیرسازه‌ای ساختمان‌های فولادی درسطوح مختلف عملکردی به صورت کمی قضاوت نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of The Effect of Buckling-Restrained Braces on Structural and Non-Structural Seismic Fragility Curves of Steel Building Frames

نویسندگان [English]

  • Reza Saadi Andis
  • Saman Bagheri
Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Seismic fragility curves serve as tools that relate earthquake damage to its intensity. These curves specify the probability of exceeding certain limit states associated with the considered damage measures as a function of the seismic intensity measure parameter. Among the engineering demand parameters that can be a measure of the damage of structural and nonstructural components as well as the comfort of the occupants, are the interstory drifts and the absolute floor accelerations. This paper aims to derive and evaluate structural and non-structural fragility curves of steel building frames equipped with buckling-restrained braces (BRBs) at different damage states based on the above two engineering demand parameters. For this purpose, incremental dynamic analysis (IDA) of the finite element model of a ten-story building frame under 44 FEMA-P695 far-field earthquake records has been used in OpenSees software with Python interpreter (OpenSeesPy). Comparing the fragility curves of the frame model without BRBs and with BRBs showed that the addition of buckling-restrained braces to steel building frames significantly reduces the probability of damage to structural and drift-sensitive non-structural components in all four damage states (slight, moderate, extensive, and complete); but it does not have a positive effect on the seismic fragility of acceleration-sensitive non-structural components. Based on the results of this study, it is possible to quantitatively evaluate the effect of buckling-restrained braces on the probability of damage to structural and non-structural components of steel buildings at different damage states.

کلیدواژه‌ها [English]

  • Fragility Curve
  • Buckling-Restrained Brace (BRB)
  • Earthquake
  • Structural Components
  • Non-Structural Components
[1] M. Wakabayashi, T. Nakamura, A. Kashibara, T. Morizono, H. Yokoyama, Experimental study of elasto-plastic properties of precast concrete wall panels with built-in insulating braces, in:  Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1973, pp. 12-20.
[2] C.C. Chen, S.Y. Chen, J.J. Liaw, Application of low yield strength steel on controlled plastification ductile concentrically braced frames, Canadian Journal of Civil Engineering, 28(5) (2001) 823-836.
[3] S. Mahin, P. Uriz, I. Aiken, C. Field, E. Ko, Seismic performance of buckling restrained braced frame systems, 13th World Conference on Earthquake Engineering, 2004.
[4] M. Dehghani, R. Tremblay, Design and full‐scale experimental evaluation of a seismically endurant steel buckling‐restrained brace system, Earthquake Engineering & Structural Dynamics, 47(1) (2018) 105-129.
[5] T. Takeuchi, J. Hajjar, R. Matsui, K. Nishimoto, I. Aiken, Effect of local buckling core plate restraint in buckling restrained braces, Engineering Structures, 44 (2012) 304-311.
[6] L. Di Sarno, A.S. Elnashai, Bracing systems for seismic retrofitting of steel frames, Journal of Constructional Steel Research, 65(2) (2009) 452-465.
[7] J. Shen, O. Seker, B. Akbas, P. Seker, S. Momenzadeh, M. Faytarouni, Seismic performance of concentrically braced frames with and without brace buckling, Engineering Structures, 141 (2017) 461-481.
[8] K. Atasever, S. Inanaga, T. Takeuchi, Y. Terazawa, O.C. Celik, Experimental and numerical studies on buckling restrained braces with posttensioned carbon fiber composite cables, Earthquake Engineering & Structural Dynamics, 49(15) (2020) 1640-1661.
[9] C. Tong, J. Wu, K. Hua, L. Xie, Low-cycle fatigue life estimation curve for buckling-restrained braces based on cumulative plastic deformation, Journal of Earthquake Engineering, 26(6) (2022) 2773-2801.
[10] R.P. Kennedy, C.A. Cornell, R. Campbell, S. Kaplan, H. Perla, Probabilistic seismic safety study of an existing nuclear power plant, Nuclear Engineering and Design, 59(2) (1980) 315-338.
[11] C. Kircher, W. Martin, Development of fragility curve for estimating of earthquake damage, Proceedings of the Workshop on Continuing Action to Reduce Losses from Earthquake, 1993.
[12] A.F. Ghowsi, D.R. Sahoo, Fragility assessment of buckling-restrained braced frames under near-field earthquakes, Steel and Composite Structures, 19(1) (2015) 173-190.
[13] X. He, Z. Lu, Seismic fragility assessment of a super tall building with hybrid control strategy using IDA method, Soil Dynamics and Earthquake Engineering, 123 (2019) 278-291.
[14] S. Hu, W. Wang, Comparative seismic fragility assessment of mid-rise steel buildings with non-buckling (BRB and SMA) braced frames and self-centering energy-absorbing dual rocking core system, Soil Dynamics and Earthquake Engineering, 142 (2021) 106546.
[15] X. Ouyang, Y. Zhang, X. Ou, Y. Shi, S. Liu, J. Fan, Seismic fragility analysis of buckling-restrained brace-strengthened reinforced concrete frames using a performance-based plastic design method, Structures, 43 (2022) 338-350.
[16] A. Filiatrault, C.M. Uang, B. Folz, C. Chrstopoulos, K. Gatto, Reconnaissance report of the February 28, 2001 Nisqually (Seattle-Olympia) earthquake. Report No. SSRP-2001/02 for the Structural Systems Research Project, University of California, San Diego; La Jolla, USA 2 (2001).
[17] E. Miranda, G. Mosqueda, R. Retamales, G. Pekcan, Performance of nonstructural components during the 27 February 2010 Chile earthquake, Earthquake Spectra, 28 (2012) 453-471.
[18] R.P. Dhakal, A. Pourali, A.S. Tasligedik, T. Yeow, A. Baird, G. MacRae, S. Pampanin, A. Palermo, Seismic performance of non-structural components and contents in buildings: an overview of NZ research, Earthquake Engineering and Engineering Vibration, 15 (2016) 1-17.
[19] D. Perrone, P. Calvi, R. Nascimbene, E. Fischer, G. Magliulo, Seismic performance of non-structural elements during the 2016 Central Italy earthquake, Bulletin of Earthquake Engineering, 17 (2019) 5655-5677.
[20] D. Gautam, R. Adhikari, R. Rupakhety, Seismic fragility of structural and non-structural elements of Nepali RC buildings, Engineering Structures, 232 (2021) 111879.
[21] A. Wanitkorkul, A. Filiatrault, Influence of passive supplemental damping systems on structural and nonstructural seismic fragilities of a steel building, Engineering Structures, 30(3) (2008) 682-675.
[22] D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthquake Engineering & Structural Dynamics, 31(3) (2002) 491-514.
[23] K. Bakalis, D. Vamvatsikos, Seismic fragility functions via nonlinear response history analysis, Journal of Structural Engineering, 144(10) (2018) 04018181.
[24] J.W. Baker, Efficient analytical fragility function fitting using dynamic structural analysis, Earthquake Spectra, 31(1) (2015) 579-599.
[25] HAZUS 5.1., Hazus earthquake model technical manual, Department of Homeland Security, Emergency Preparedness and Response Directorate, FEMA, Washington, DC, USA.2022.
[26] AISC. Specification for structural steel buildings. ANSI/AISC 360-16. American Institute of Steel Construction, Chicago, Illinois, USA, (2016).
[27] AISC. Seismic provisions for structural steel buildings. ANSI/AISC 341-16. American Institute of Steel Construction, Chicago, Illinois, USA, (2016).
[28] ASCE. Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-16, American Society of Civil Engineers, Reston, Virginia, USA, (2016).
[29] A. Upadhyay, C. Pantelides, L. Ibarra, Residual drift mitigation for bridges retrofitted with buckling restrained braces or self centering energy dissipation devices, Engineering Structures, 199 (2019) 109663.
[30] W. Xu, C.P. Pantelides, Strong-axis and weak-axis buckling and local bulging of buckling-restrained braces with prismatic core plates, Engineering Structures, 153 (2017) 279-289.
[31] Y. Feng, J. Wu, C. Wang, S. Meng, Evaluating the effect of buckling-restrained brace model on seismic structural responses, Journal of Earthquake and Tsunami, 11(1) (2017) 1750002.
[32] FEMA. Quantification of building seismic performance factors. FEMA-P695, Federal Emergency Management Agency, Washington, DC, USA, (2009).
[33] J.E. Padgett, B.G. Nielson, R. DesRoches, Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios, Earthquake Engineering & Structural Dynamics, 37(5) (2008) 711-725.