مطالعه ضرایب لرزه‌‌ای دیوار برشی فولادی کامپوزیت در سیستم قاب ساختمانی به روش تحلیل دینامیکی افزایشی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

با توجه به پیشرفت سیستم‌‌های مقاوم باربر جانبی، لزوم مطالعه بیشتر در مورد سایر سیستم‌‌های نوین بیشتر حس می‌‌گردد. با میل بررسی رفتار سازه‌‌ها از حالت خطی به غیرخطی و استاتیکی به دینامیکی، روش‌‌های تحلیل و طراحی نظیر دینامیکی افزایشی نتایج دقیق‌‌تری در اختیار محققین قرار خواهد داد. به دلیل عدم ارائه ضریب رفتار برای سیستم باربر جانبی دیوار برشی فولادی کامپوزیت در استانداردهای کشور ایران می‌‌توان گفت که هدف اصلی این پژوهش مطالعه ضرایب لرزه‌‌ای و در نتیجه حصول ضریب رفتار به روش تحلیل دینامیکی افزایشی برای سیستم مذکور خواهد بود. در این پژوهش ابتدا جهت حصول شبکه‌‌بندی بهینه مدلی آزمایشگاهی مورد صحت‌‌سنجی قرار گرفت. سپس سه مدل سازه‌‌ای (7، 14 و 21 طبقه) که معرف سازه‌‌های کوتاه، میان و بلند مرتبه بوده در نرم‌‌افزار ایتبس طراحی و در نهایت قابی دوبعدی از سازه‌‌های مذکور جدا شده و در نرم‌‌افزار آباکوس مورد تحلیل‌‌های (مودال، استاتیکی غیرخطی و دینامیکی فزاینده) قرار گرفت. نتایج نشان‌‌دهنده افزایش ضریب اضافه مقاومت ضمن افزایش ارتفاع سازه از 4/942 به 5/213 بوده که این امر بیان‌‌گر نسبت مستقیم ضریب اضافه مقاومت با ارتفاع سازه می‌‌باشد و عکس این مطلب با توجه به افت ضرایب شکل‌‌پذیری از 1/496 به 1/266 صادق خواهد بود. در بخش ضریب رفتار نیز مقدار 7/396، 6/742 و 6/6 در حالت حدی و 10/355، 9/438 و 9/24 در حالت تنش مجاز به ترتیب برای سازه‌‌های کوتاه، میان و بلند مرتبه حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Study on the Seismic Behavioral Parameters of the Composite Steel Plate Shear Wall (CSPSW) in The Building Frame System Using Incremental Dynamic Analysis (IDA)

نویسندگان [English]

  • shahrokh golpayegani
  • majid gholhaki
semnan university
چکیده [English]

Due to the advancements in lateral force-resisting systems, there is a growing need to study other modern systems further. To investigate the behavior of structures from linear to nonlinear and static to dynamic, analysis and design methods such as incremental dynamic analysis offer researchers more accurate results. Given the absence of a specified behavior factor for the lateral force-resisting system of composite steel plate shear walls in Iranian standards, the primary objective of this research is to analyze the seismic coefficients and, consequently, determine the behavior factor using the incremental dynamic analysis method for the systems in question. This research initially validated a laboratory model to achieve optimal networking. Subsequently, three structural models representing short (7 stories), medium (14 stories), and tall (21 stories) buildings were designed using ETABS software. Finally, a two-dimensional frame was extracted from the mentioned structures and analyzed using Abaqus software for modal, nonlinear static, and incremental dynamic responses. The results demonstrate an increase in the overstrength factor coefficient as the height of the structure increases, rising from 4.942 to 5.213. This indicates a direct correlation between the overstrength factor and the height of the structure. Conversely, a decrease in the ductility coefficient, from 1.266 to 1.496, confirms the inverse relationship between ductility and the height of the structure. In the section on the behavior coefficient, the values of 7.396, 6.742, and 6.6 were obtained in the extreme state and 10.355, 9.438, and 9.24 in the admissible stress state respectively for short, medium, and tall structures.

کلیدواژه‌ها [English]

  • Composite Steel Plate Shear Wall
  • Incremental Dynamic Analysis
  • Overstrength Factor Coefficient
  • Ductility Coefficient
  • Behavior Coefficient
[1] Seismic Provisions for Structural Steel Buildings, ANSI/AISC341-16, American Institute of Steel Construction, Chicago, Illinois, (2016).
[2] Astaneh-Asl A. Seismic Behavior and Design of Composite Steel Plate Shear Walls: Structural Steel Educational Council Moraga, CA, USA; (2002).
[3] Rahai A, Hatami F. Evaluation of Composite Shear Wall Behavior Under Cyclic Loadings. Journal of Constructional Steel Research. 65(7) (2009) 1528-37.
[4] Hatami Barq F, Sohri SMR. Investigating Changes in Steel Sheet Thickness on Composite Shear Wall Behavior. Structure and Steel, (2008) 4(4), 26-36. SID. https://sid.ir/paper/136609/fa (In Persian).
[5] Ayazi A, Arabzadeh A, Soltani Mohammadi M. the Influence of Different Parameters on the Behavior of Composite Shear Wall According to Laboratory Studies, the First National Conference on Structures, Earthquakes, Geotechnics, Babolsar, https://civilica.com/doc /98396 (2010) (In Persian).
[6] Arabzadeh A, Soltani M, Ayazi A. Experimental Investigation of Composite Shear Walls Under Shear Loadings. Thin-Walled Structures. 49(7) (2011) 842-54.
[7] Arabzadeh A, Pishvaii M. The Effect of Distance Between Concrete Panel and Steel Frame on the Behavior of Composite Shear Walls. (2012) (In Persian).
[8] Rassouli B, Shafaei S, Ayazi A, Farahbod F. Experimental and Numerical Study on Steel-Concrete Composite Shear Wall Using Light-Weight Concrete. Journal of Constructional Steel Research.126 (2016) 117-28.
[9] Gholhaki M, Movahedinia M, Rezaeifar O. Providing Analytical Relationship to Calculate the Stiffness of Composite Steel Shear Walls. Amirkabir Civil Engineering Journal. 50(3) (2018) 607-16.
[10] Wang W, Wang Y, Lu Zh. Experimental Study on Seismic Behavior of Steel Plate Reinforced Concrete Composite Shear wall. Journal of Engineering Structures.160(2018) 281-292.
[11] Shokrgozar HR, Ghannadiasl A, Omidi H. Concrete Filled Double Steel Plate Shear Wall Response Modification Factor. Journal of Structural and Construction Engineering. 5(4) (2019) 140-155.
[12] Zhang W, Wang K, Chen Y, Ding Y. Experimental Study on the Seismic Behaviour of Composite Shear Walls with Stiffened Steel Plates and Infilled Concrete. Journal of Thin-Walled Structures.144(2019) 106279.
[13] Gholhaki M, Soleymani A, Rezaei Far O. Determining Coefficient Behavior of Reinforced Moment Frame Having the Steel Plate Shear Wall Using Incremental Non-linear Dynamic Analysis (IDA). Ferdowsi Civil Engineering. 32(4) (2020) 13-30. (In Persian).
[14] Qazvini S, Gholhaki M. Determination of Behavior Coefficient of Steel Shear Wall with Thin Sheet Base on Incremental Dynamic Analysis (IDA), International Conference on Civil Engineering, Tehran, (2015) https://civilica.com/doc/506765 (In Persian).
[15] Gholhaki M, Rezayfar O, Rahimikhah MS. Provide Analytical Relationship to Calculate the Strength of Composite Steel Shear Walls by Abaqus software. Journal of Structural and Construction Engineering. 8(3) (2021) 42-55. (In Persian).
[16] Gholhaki M, Rahimi T, Kheyroddin A. An Analytical and Numerical Study on Effect of Thickness and Concrete Type of Panels on Behavior of Composite Steel Plate Shear Walls. Amirkabir Journal of Civil Engineering. 53(9) (2021) 3623-48.
[17] Munesi A, Gholhaki M, Sharbatdar MK, Pachideh V. Study on the Gap Width Between the Steel Plate and Concrete Panels on Behavior of the Buckling‐Restrained Steel Plate Shear Walls. Structural Concrete. (2023).
[18] Timler PA, Kulak GL. Experimental study of steel plate shear walls. (1983).
[19] Standing Committee for Revision of Building Design Regulations Against Earthquakes, "Building Design Regulations Against Earthquakes", Standard 2800, Fourth Edition, Ministry of Housing and Urban Development, (2013) (In Persian).
[20] Office of National Building Regulations, "Design and Implementation of Steel Buildings", 10th Topic of National Building Regulations, 4th edition, Ministry of Housing and Urban Development, (2012) (In Persian).
[21] Minimum Design Loads for Buildings and Other Structures, ASCE/SEI7-22, American Society of Civil Engineers, (2022).
[22] Sabouri S. An Introduction to Steel Shear Walls, First Edition, Motish Publications, Tehran, (2001) (In Persian).
[23] PEER Ground Motion Database, (https://ngawest2.berkeley.edu)
[24] Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Federal Emergency Management Agency, (2000).
[25] Quantification of Building Seismic Performance Factors, FEMA P695, Federal Emergency Management Agency, (2009).
[26] Instruction for Seismic Rehabilitation of Existing Buildings, NO.360, First Revision, Office of Deputy for Strategic Supervision Department of Technical Affairs, (2014) (In Persian).
[27] Mwafy A, Elnashai AS. Calibration of Force Reduction Factors of RC Buildings. Journal of Earthquake Engineering. 6(02) (2002) 239-73.
[28] Masoumi A. "Determining the Coefficient of Behavior of Reinforced Concrete flexural Frames with emphasis on Added Strength and Degree of Indeterminacy", Dissertation of the Doctoral Course of Structural Engineering, Technical and Engineering Faculty of Tarbiat Modarres University. (2013) (In Persian).