ارزیابی تأثیر بهسازی به روش الکترواسمزی بر خصوصیات مکانیکی خاک رس نرم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، معماری و هنر، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

2 دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران

چکیده

یکی از انواع روش‌های بهسازی خاک، روش الکتریکی است. در اﯾﻦ روش ﺗﺜﺒﯿﺖ خاک‌های رﯾﺰداﻧﻪ، به‌‌ویژه خاک‌های رﺳﯽ اشباع‌، ﺑﺎ ﮐﺎﻫﺶ ضخامت لایه آب دوگانه از ﻃﺮﯾﻖ برقراری ﺟﺮﯾﺎن اﻟﮑﺘﺮﯾﮑﯽ اﻧﺠﺎم می‌شود. خاک رس نرم از جمله خاک‌های مسئله‌دار است، این خاک تحت تأثیر شرایط آب و هوایی قرار دارد و احداث سازه بر روی آن‌ها همواره با خطر مواجه است. در این مطالعه به‌منظور بهسازی و تثبیت خاک‌های رسی نرم از روش تزریق الکتروکینتیکی، که یکی از روش‌های تثبیت در حالت برجا بوده و از لحاظ زمان و هزینه بسیار به‌صرفه است استفاده شده است. به این منظور، در شرایط آزمایشگاهی لایه‌ای از خاک با درصد رطوبت و وزن مخصوص در محل در محفظه‌ای به ابعاد cm3 50*30*20 در پنج لایه متراکم شده و جریان مستقیم (DC) با ولتاژهای v/cm 1 و 1/5 به مدت 48 ساعت اعمال گردیده است. الکترودهای مورد استفاده از جنس آلومینیوم و گرافیت و در دو حالت میله‌ای و صفحه‌ای مورد استفاده قرار گرفتند. نتایج شاخص مطالعات نشان داد که استفاده از این روش سبب افزایش مقاومت فشاری محدود نشده از kpa 98 به  kpa 223 به میزان 128%، کاهش درصد رطوبت از 24 به 15/2 به میزان 37%، کاهش شاخص خمیری از 24 به 10 به میزان 58% و کاهش تخلخل خاک از 0/675 به 0/443 نسبت به نمونه خاک بهسازی نشده می‌شود. نتایج تحلیل شیمیایی در بررسی تصاویر میکروسکوپ الکترونی روبشی صحت نتایج فیزیکی را تایید می نماید. با توجه به آزمایش‌های درصد رطوبت، حدود اتربرگ، مقاومت فشاری محدود نشده و تحکیم مشخص گردید بهترین عملکرد مربوط به استفاده از الکترود آلومینیوم صفحه‌ای با ولتاژ 1/5 v/cm می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating effect of electro – osmotic on mechanical properties of soft clay

نویسندگان [English]

  • Hadis Bibak 1
  • Navid Ganjian 1
  • Jahangir Khazaei 2
  • amin bahmanpour 1
1 Civil Engineering Department, Science and Reseach, Islamc azad University
2 Civil engineering faculty, razi university
چکیده [English]

One of the techniques of stabilization soil is the electrical method. In this method, stabilization of fine-grained soils, especially saturated clay soils, is done by reducing the thickness of the double water layer by establishing an electric current. In this study, to improve and stabilize soft clay soils, the electrokinetic injection method, which The index results of the studies showed that the use of this method increases the unconfined compressive strength from 98 kPa to 223 kPa, decreases the water content from 24  to 15/2 and the plasticity index from 24 to 10 and Soil porosity decreases from 0/675 to 0/443. The results of the chemical analysis confirm the correctness of the physical results in the scanning electron microscope images. According to the water content, Etterberg limits, unconfined compressive strength, and consolidation tests, it was determined that the best performance is related to the use of plate aluminum electrodes with a voltage of  1/5.

کلیدواژه‌ها [English]

  • Soft Clay Soil
  • Electro - Osmosis
  • Electrod Material
  • Electrode Shape
[1] I.L. Casagrande, Electro-osmosis in soils, Geotechnique, 1(3) (1949) 159-177.
[2] S. Jayasekera, Electrokinetics to modify strength characteristics of soft clayey soils: a laboratory based investigation, Electrochimica Acta, 181 (2015) 39-47.
[3] A. Estabragh, M. Naseh, A. Javadi, Improvement of clay soil by electro-osmosis technique, Applied Clay Science, 95 (2014) 32-36.
[4] M. Malekzadeh, J. Lovisa, N. Sivakugan, An overview of electrokinetic consolidation of soils, Geotechnical and Geological Engineering, 34 (2016) 759-776.
[5] P. Asavadorndeja, U. Glawe, Electrokinetic strengthening of soft clay using the anode depolarization method, Bulletin of engineering geology and the environment, 64 (2005) 237-245.
[6] J.G. Loch, A.T. Lima, P.J. Kleingeld, Geochemical effects of electro-osmosis in clays, Journal of applied Electrochemistry, 40 (2010) 1249-1254.
[7] S.R. Kaniraj, J. Yee, Electro-osmotic consolidation experiments on an organic soil, Geotechnical and Geological Engineering, 29(4) (2011) 505-518.
[8] S. Jayasekera, S. Hall, Modification of the properties of salt affected soils using electrochemical treatments, Geotechnical and Geological Engineering, 25 (2007) 1-10.
[9] D. Tjandra, P.S. Wulandari, Improving marine clays with electrokinetics method, Civil Engineering Dimension, 9(2) (2007) 98-102.
[10] H. Shoghi, M. Ghazavi, N. Ganjian, Pilot-scale electrokinetic treatment of dispersive soil and feasibility study of sodium ion transport across the soil by electric field relocation, Arabian Journal of Geosciences, 12 (2019) 1-7.
[11] F. Cheng, S. Guo, H. Zeng, B. Wu, Effect of electrokinetic process on in situ stabilization and detoxification of arsenic-contaminated soil with high content of calcium, Environmental Research, 241 (2024) 117504.
[12] S. Ge, J. Zang, Y. Wang, L. Zheng, X. Xie, Combined stabilization/solidification and electroosmosis treatments for dredged marine silt, Marine Georesources & Geotechnology, 39(10) (2021) 1157-1166.
[13] J.Q. Shang, W.A. Dunlap, Improvement of soft clays by high-voltage electrokinetics, Journal of geotechnical engineering, 122(4) (1996) 274-280.
[14] C.-Y. Ou, S.-C. Chien, Y.-G. Wang, On the enhancement of electroosmotic soil improvement by the injection of saline solutions, Applied Clay Science, 44(1-2) (2009) 130-136.
[15] H. Wu, L. Hu, Microfabric change of electro-osmotic stabilized bentonite, Applied Clay Science, 101 (2014) 503-509.
[16] V. Jeyakanthan, C. Gnanendran, S.-C. Lo, Laboratory assessment of electro-osmotic stabilization of soft clay, Canadian Geotechnical Journal, 48(12) (2011) 1788-1802.
[17] M. Malekzadeh, N. Sivakugan, One-dimensional electrokinetic stabilization of dredged mud, Marine Georesources & Geotechnology, 35(5) (2017) 603-609.
[18] T. Askin, D. Turer, Effect of electrode configuration on electrokinetic stabilization of soft clays, Quarterly Journal of Engineering Geology and Hydrogeology, 49(4) (2016) 322-326.
[19] H.A.M. Mahalleh, M. Siavoshnia, M. Yazdi, Effects of electro-osmosis on the properties of high plasticity clay soil: chemical and geotechnical investigations, Journal of Electroanalytical Chemistry, 880 (2021) 114890.
[20] J. Zhou, Y.L. Tao, C.J. Xu, X.N. Gong, P.C. Hu, Electro-osmotic strengthening of silts based on selected electrode materials, Soils and Foundations, 55(5) (2015) 1171-1180.
[21] Y.-m. Liu, H.-f. Xu, Experimental study of the electrode material for electro-osmosis in mudflat sludge, in:  IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2017, pp. 012093.
[22] C. Yuan, C.-h. Weng, Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient, Advances in Environmental research, 7(3) (2003) 727-732.
                                                                        
[23] A. Alibarootitabar, A. Ardakani, M. Mahmoudipour, Evaluation of the effect of voltage variation on the electro-osmosis dewatering of a silty soil using prefabricated vertical drains, International Journal of Geotechnical Engineering, 15(4) (2021) 512-518.
[24] Z. Xue, X. Tang, Q. Yang, Influence of voltage and temperature on electro-osmosis experiments applied on marine clay, Applied Clay Science, 141 (2017) 13-22.
[25] J. Akansha, S. Thakur, M.S. Chaithanya, B.S. Gupta, S. Das, B. Das, N. Rajasekar, K. Priya, Technological and economic analysis of electrokinetic remediation of contaminated soil: A global perspective and its application in Indian scenario, Heliyon  (2024).
[26] M.Y. Fattah, Q.G. Majeed, H.H. Joni, Comparison between methods of soil saturation on determination of the soil water characteristic curve of cohesive soils, Arabian Journal of Geosciences, 14(2) (2021) 101.
[27] L. Zhang, L.-p. Jing, N.-w. Wang, C. Fang, Y.-q. Li, Z.-d. Shan, Electro-Osmosis Chemical Treatment of High-Salinity Soft Marine Soils: Laboratory Tests, The Open Civil Engineering Journal, 11(1) (2017).
[28] J. Wang, H. Fu, F. Liu, Y. Cai, J. Zhou, Influence of electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry, Canadian Geotechnical Journal, 55(1) (2018) 147-153.
[29] Z. Sun, W. Tan, J. Gong, G. Wei, Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration, Toxics, 11(3) (2023) 263.
[30] S.R. Kaniraj, H. Huong, J. Yee, Electro-osmotic consolidation studies on peat and clayey silt using electric vertical drain, Geotechnical and Geological Engineering, 29(3) (2011) 277-295.
[31] Z. Sun, J. Geng, C. Zhang, Q. Du, Electrokinetic Remediation of Cu-and Zn-Contaminated Soft Clay with Electrolytes Situated above Soil Surfaces, Toxics, 12(8) (2024) 563.
[32] Z. Sun, S. Xu, C. Zhang, J. Geng, Y. Gu, Electroosmotic strengthening of soft clay under different electrification modes, Energy Science & Engineering  (2024)..
[33] H. Jin, L. Zhang, B. Wang, C. Fang, L. Wang, Effects of electrode materials and potential gradient on electro-osmotic consolidation for marine clayey soils, Frontiers in Earth Science, 12 (2024) 1260045.
[34] Z. Sun, C. Zhang, B. Demarscho Eugene, X. He, Electroosmotic flow in soft clay and measures to promote movement under direct current electric field, Plos one, (4) (2024)19 .0302150.
[35] W. Abdullah, A. Al-Abadi, Cationic–electrokinetic improvement of an expansive soil, Applied Clay Science, 47(3-4) (2010) 343-350.
[36] V. Kumar, The effect of electrokinetic stabilization (EKS) on peat soil properties at Parit Botak area, Batu Pahat, Johor, Malaysia, Indian Journal of Science and Technology, 11 (2018) 44.
[37] C. Liaki, C. Rogers, D. Boardman, Physico-chemical effects on clay due to electromigration using stainless steel electrodes, Journal of applied electrochemistry, 40 (2010) 1225-1237.
[38] A. Wahab, Z. Embong, S.A.A. Tajudin, Q.U. Zaman, H. Ullah, The electrokinetic stabilization (EKS) impact on soft soil (peat) stability towards its physical, mechanical and dynamic properties at Johor state, Peninsular Malaysia, Physics and Chemistry of the Earth, Parts a/b/c, 123 (2021) 103028.
[39] D. Bergado, A. Balasubramaniam, M. Patawaran, W. Kwunpreuk, Electro-osmotic consolidation of soft Bangkok clay with prefabricated vertical drains, Proceedings of the Institution of Civil Engineers-Ground Improvement, 4(4) (2000) 153-163.
[40] A.H. Vakili, R. Narimousa, M. Salimi, M.S. Farhadi, M. Dezh, Effect of freeze-thaw cycles on characteristics of marl soils treated by electroosmosis application, Cold Regions Science and Technology, 167 (2019) 102861.
[41] A. Flora, S. Gargano, S. Lirer, L. Mele, Effect of electro-kinetic consolidation on fine grained dredged sediments, Procedia Engineering, 158 (2016) 3-8.
[42] G. Lefebvre, F. Burnotte, Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes, Canadian Geotechnical Journal, 39(2) (2002) 399-408.
[43] Y. Shen, W. Shi, S. Li, L. Yang, J. Feng, M. Gao, Study on the Electro‐Osmosis Characteristics of Soft Clay from Taizhou with Various Saline Solutions, Advances in Civil Engineering, 2020(1) (2020) 6752565.
[44] A. Hosseini, S.M. Haeri, S. Mahvelati, A. Fathi, Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils, Journal of Rock Mechanics and Geotechnical Engineering, 11(5) (2019) 1055-1065.
[45] Z. Sun, Y. Qing, C. Zhang, B.D. Eugene, Electroosmosis and electrophoresis in soft clay under direct current electric field, Heliyon, 10(7) (2024).
[46] Y. Sugiyama, N. Hashimoto, C. Couture, D. Takano, Electrochemical perspective on the applicability of electroosmosis for clay consolidation, Journal of Applied Electrochemistry, 54(5) (2024) 1057-1073.
[47] W. Wen, L. Jia, W. Zhao, H. Feng, D. Cao, J. Xie, T. Xu, M. Cui, W. Zhou, Q. Mei, Study on the effect of electrokinetic methods combined with and solidification/stabilization technique for remediation of Cu2+-contaminated soil under different voltage gradients, International Journal of Electrochemical Science, 17(10) (2022) 221021.
[48] H. Bibak, J. Khazaei, H. Moayedi, Investigating the effect of a new industrial waste on strengthening the soft clayey soil, Geotechnical and Geological Engineering, 38 (2020) 1165-1183.