مطالعه عددی برروی استفاده از بتن پرمقاومت مسلح شده با الیاف در دیوارهای برشی با المان‌های مرزی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

از جمله موارد منفی موجود در سازه های بتنی می‌توان به ابعاد بزرگ اعضای بتنی، تراکم زیاد آرماتورها در بعضی مقاطع و رفتار ترد بتن اشاره کرد. استفاده از سنگدانه ریز و نسبت آب به سیمان کم‌تر سبب افزایش مقاومت می‌شود، افزودن الیاف به بتن پرمقاومت  UHPC  باعث افزایش نرمی و مقاومت کششی بتن می‌شود که با عنوان بتن پرمقاومت با الیاف UHPFRC  مطرح می‌شود و می‌توان به مقاومت فشاری تا حدود 200 مگاپاسکال و مقاومت کششی تا حدود 14 مگاپاسکال دست پیدا کرد. در این مقاله ابتدا تکنیکی برای مدلسازی عددی این بتن به کمک نرم‌افزار اجزامحدود LS-DYNA پیشنهاد شده است. در این تکنیک با اصلاح بخش کشش، یک مدل ماده‌ی بتن معمولی به وسیله‌ی روابط حاصل از مطالعات تجربی، امکان مدلسازی عددی بتن UHFRC فراهم شده است. پس از راستی آزمایی مدل ماده بتن اصلاح شده در نرم افزار LS-DYNA، اثرات استفاده از این بتن در رفتار چرخه ای دیوارهای برشی کوتاه و لاغر به کمک مدلسازی عددی بررسی شده است. استفاده از این بتن در اعضای مرزی دیوارها تاثیر بسزایی در بهبود رفتار لرزه ای آن‌ها دارد. در این تحقیق اثرات پارامترهای مختلف بررسی شده و مشاهده شد با افزایش درصد الیاف تا سه درصد، مقاومت جانبی دیوار تا 79% افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study on Ultra High-Performance Fiber Reinforced concrete for application in shear walls with boundary elements

نویسندگان [English]

  • zeinab nouri
  • Siamak Epackachi
Department of Civil & Environmental Engineering Amirkabir University of Technology (Tehran, Polytechnic)
چکیده [English]

The negative issues of concrete structures include the large dimensions of concrete members due to the low resistance of concrete compared to steel structures, the high density of reinforcements in some parts, and the brittle behavior of concrete due to weakness in tension. The use of fine aggregate and a lower water-to-cement ratio increases the strength, adding fibers to high-strength UHPC concrete increases the softness and tensile strength of concrete, which is called high-strength concrete with UHPFRC fibers with a compressive strength up to 200 MPa and a tensile strength of up to 14 Mpa. In this research, a technique for the numerical modeling of UHPC concrete is proposed using the LS-DYNA finite element software and modifying the tensile part of a normal concrete material model and the available test data. The validated LS-DYNA model is used to study this concrete on the cyclic behavior of short and thin shear walls. The use of this concrete in the boundary element of the walls has a significant effect in improving their seismic behavior. In this research, the effects of different parameters were investigated. It will be shown that an increment in the percentage of fibers up to 3%, the wall's lateral resistance and initial stiffness increase significantly.

کلیدواژه‌ها [English]

  • Ultra High-Performance Concrete
  • Ultra High-Performance Fiber Reinforced Concrete
  • Finite Element Analysis
  • LS-DYNA
  • Cyclic Behavior
[1] H. Marzouk, Z. Chen, Fracture energy and tension properties of high-strength concrete, Journal of Materials in Civil Engineering, 7(2) (1995) 108-116.
[2] M.F.M. Zain, H. Mahmud, A. Ilham, M. Faizal, Prediction of splitting tensile strength of high-performance concrete, Cement and Concrete Research, 32(8) (2002) 1251-1258.
[3] S.P. Shah, B.V. Rangan, Fiber reinforced concrete properties, in:  Journal Proceedings, 1971, pp. 126-137.
[4] J. Susetyo, P. Gauvreau, F.J. Vecchio, Effectiveness of Steel Fiber as Minimum Shear Reinforcement, ACI Structural Journal, 108(4) (2011).
[5] M. Grzybowski, S.P. Shah, Shrinkage cracking of fiber reinforced concrete, Materials journal, 87(2) (1990) 138-148.
[6] A.A. Shah, Y. Ribakov, Recent trends in steel fibered high-strength concrete, Materials & Design, 32(8-9) (2011) 4122-4151.
[7] N.T. Tran, T.K. Tran, D.J. Kim, High rate response of ultra-high-performance fiber-reinforced concretes under direct tension, Cement and Concrete Research, 69 (2015) 72-87.
[8] K. Habel, M. Viviani, E. Denarié, E. Brühwiler, Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC), Cement and Concrete Research, 36(7) (2006) 1362-1370.
[9] P. Richard, M. Cheyrezy, Composition of reactive powder concretes, Cement and concrete research, 25(7) (1995) 1501-1511.
[10] J. Charron, E. Denarié, E. Brühwiler, Permeability of UHPFRC under high stresses, Proc., Advances in Concrete Through Science and Engineering,(CD-ROM), RILEM, Evanston, Il,  (2004).
[11] P. Rossi, A. Arca, E. Parant, P. Fakhri, Bending and compressive behaviours of a new cement composite, Cement and Concrete Research, 35(1) (2005) 27-33.
[12] J. Wuest, E. Brühwiler, D.C.E. ETH, Model for predicting the UHPFRC tensile hardening, in:  Ultra High Performance Concrete (UHPC): Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2008, pp. 153.
[13] K. Wille, S. El-Tawil, A.E. Naaman, Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading, Cement and Concrete Composites, 48 (2014) 53-66.
[14] J.O. Hallquist, LS-DYNA keyword user’s manual, Livermore Software Technology Corporation, 970 (2007) 299-800.
[15] K. Bi, H. Hao, Numerical simulation of pounding damage to bridge structures under spatially varying ground motions, Engineering Structures, 46 (2013) 62-76.
[16] B. Broadhouse, A. Neilson, Modelling reinforced concrete structures in DYNA3D, UKAEA Atomic Energy Establishment, 1987.
[17] L. Schwer, The Winfrith concrete model: Beauty or beast? Insights into the Winfrith concrete model, in:  8th European LS-DYNA users conference, 2011, pp. 23-24.
[18] N.S. Ottosen, A failure criterion for concrete, Journal of the Engineering Mechanics Division, 103(4) (1977) 527-535.
[19] A. Hassan, S. Jones, G. Mahmud, Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC), Construction and building materials, 37 (2012) 874-882.
[20] P.A. Krahl, G.d.M.S. Gidrão, R. Carrazedo, Cyclic behavior of UHPFRC under compression, Cement and Concrete Composites, 104 (2019) 103363.
[21] M. Singh, A. Sheikh, M.M. Ali, P. Visintin, M. Griffith, Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams, Construction and Building Materials, 138 (2017) 12-25.
[22] H. Sobuz, P. Visintin, M.M. Ali, M. Singh, M. Griffith, A. Sheikh, Manufacturing ultra-high performance concrete utilising conventional materials and production methods, Construction and Building materials, 111 (2016) 251-261.
[23] M. Asgarpoor, A. Gharavi, S. Epackachi, Investigation of various concrete materials to simulate seismic response of RC structures, in:  Structures, Elsevier, 2021, pp. 1322-1351.
[24] B.N. Luna, J.P. Rivera, J.F. Rocks, C. Goksu, A.S. Whittaker, Seismic performance of low aspect ratio reinforced concrete shear walls, in:  Proceedings of the 22nd International Conference on Structural Mechanics in Reactor Technology, 2013.
[25] M. Hube, A. Marihuén, J.C. de la Llera, B. Stojadinovic, Seismic behavior of slender reinforced concrete walls, Engineering Structures, 80 (2014) 377-388.
[26] A. Committee, Building code requirements for structural concrete (ACI 318-08) and commentary, in, American Concrete Institute, 2008.
[27] L. Ls-Dyna, Keyword user’s manual, Livermore Software Technology Corporation, 598 (2007) 599.